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Equilibrium Stability Analysis &
Next Generation Method

The death of an epidemic

» In SIR equations, let’s divide equation for dX/dt by dZ/
dt:

dX/dZ = - B X Y/N)/Y)
_ <IN

= Integrate with respect to Z
s X(0) = X(0) e ZOR/N

& When epidemic is over, by definition, we have X(co),

Y (e0) (=0), and Z(co)

o X(oo) = N — Z(o0) = X(0) & =) Ro/N
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The death of an epidemic

s So, N —Z(e) - X(0) e Z&R/MN = g

& Solve this numerically (‘transcendental’ equation)

1

0.9

08

Epidemic dies out because
there are too few infectives,
not because of too few
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Frequency- or Density-Dependent Transmission?

Assumed contact rate, K, constant: ‘mixing’ is independent of
population size: frequency-dependent transmission. Reasonable?

If we assume contact rate to be kKN (increases with ‘crowding’),

then transmission rate is
odX/dt = XY

Called density-dependent transmission
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Does it Matter?

Again, pathogen invasion if dY/dt > o
If initially everyone susceptible (X=N),
BNY -yY>0=Y(PN-vy) >0
In this case, we define R = N/y, so need R _>1

Hence, for any particular § and v, there’s now a threshold

population density required for invasion




Incorporating virulence

& Assume infectious individuals die at rate a

dY
e P s
dt (RS
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What should we do?

o If population size doesn’t change, FD & DD
equivalent (Brp = N x Bop)
o Otherwise:
¢ Frequency-dependence generally more appropriate
in large populations with heterogenous mixing,
STDs, vector-borne pathogens
@ Density-dependence representative of wildlife &
livestock diseases (especially with smaller

population sizes)
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LONG-TERM DYNAMICS

* So far; looked at start and end of a simple epidemic

* In other settings, would like to know systems dynamics in the
long run

* Use equilibrium analysis
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Simple model for a non-immunising
infection, that is only cleared through
ifeatment

dX Y

— - VY - BXE Recall that N=X+Y, so we can

Ay v rewrite this system as

a PN ay Y

t
— =0B(N-Y)— —7Y

System reduced to a single dt & )N 0
tat jabl
state variable % v

. B E:ﬁY(l—N)—ny

What is Ry here! £ == \

Y

FQUILIBRIUM ANALYSIS

- Can study properties of model at equilibrium (setting rates
of change = 0)

- Setting dY/dt =0, we get
B(N-Y)Y/N - yY =0,
SoY(B(N-Y)/N-y)=0

+ Satisfied wheneverY=0 orY=N - Ny/B = N(I-1/Ry)
- Egm points are: 0 and N(I-1/Ro)
- So, under what circumstances do we see each state!?




STABILITY ANALYSIS

+ So, we have two equilibria — one where pathogen persists
and one where it is absent

- What are conditions that determine when we observe
one or other?

- For answer to this question, we need to carry out linear
stability analysis
- Basic idea Is to start at an equilibrium point and introduce

a slight change (a ‘perturbation’) and establish whether this
perturbation grows (unstable) or decays (stable)

EQUILIBRIUM STABILITY

Stable Unstable  Neutrally
Stable

To determine stability properties of equilibria, we
need to calculate dominant ‘eigenvalue’




MNESRSTABILITY ANALYSISH EDAEESIE

* Assume we have a single state variable

dY
= 1)

* 5o, at equilibrium point Y*, {(Y*)=0

* Now, we're interested in knowing what happens if we
slightly ‘perturb’ equilibrium

SR v (y==Y7%), substitute in ODE

dY +y) _dy _

oo Ny

EINEARTSTABILITY ANAEBSISHISIE
LADE

- f{(N*+n) can be expressed as a Taylor expansion
dy * * *
D= 1)l ) R

* Note: f means derivative of f with respect toY
* We end up with a linear ODE, solution to which is

y(t) = y(0)ef Y1

- f'(N¥) is ‘eigenvalue’ -- from now on, we'll call it A

- Our perturbation, y(t), will
Grow exponentially if A >0 (equilibrium Unstable)
Decay exponentially if A <O (equilibrium Stable)
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qay _ N
dt _[SY(I N Y

+ System is in equilibrium as long as
=0 (or X* = N) ..ie DFE
»orY* = N(I-y/p) = N(I-1/Ro)
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F¥) = BY (1 - 1) =¥
=g
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F(¥) =8~ 265 7

® So, when Y*=0,
RO =y
=<0 if y>f3 or Ro<1

B When Y*=N(1-v/f),

= by
=<0 if B>y or Ro>1

S EIERRCANARES

* Let's do this in general terms

* For a system containing n state variables, we have

dN.
dtl =f;(N1>N29"°9Nn) i=1,...n

=Now, we perturb equilibrium (Ni = Ni™+x;, xi<<Ni"), Taylor
expand fi() and ignore higher order terms (xi, xix;j etc)

®Growth of perturbations (X, i=1,n) given by linear set of
ODEs

Keeling & Rohani (2008) pp30-3|
Excellent texts: Strang (1986) & Kreyszig (2010)




SEDING A LATENT PERIOD: SEIRSM@BIEE

* Incorporating a latent period takes into account transition
from infected but not yet infectious to infectious

ds

1 BST— 1S

7 w—PBSI -

A e (o)

dt

A o oE -+ w1

dt

AR

s R

e Note:S+E+1+R=1
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* In qualitative ways, this addition makes little difference

* System still possesses two equilibria: DFE (1,0,0) and an
endemic equilibrium

T LM(ROA),E(RO—D}

R, po B

mExpression for Ry is now

o b
(w+vy)u+o)




INVASION PHASE: SIR

» Consider Jacobian for SIR model, evaluated at disease free
equilibrium

=u - 0)
J={0 B-(u+y) 0:;
0 Y -u)

=We worked out that two eigenvalues are A;,=-u

mThird is A3=B-(u+y) = (Ry=1)(u+y)

mSo, initial dynamics of | class are driven by this largest eigenvalue (Aj)
and (assume w is small) are given by

L = 1(0) xe™7"

INVASION PHASE: SEIR

* If we do exactly same thing for SEIR model (straightforward but more
involved), we get

Isgrr =~ I1(0) - e%(—(U+’v)+\/4(R0—1)70+(7+U)2>
= This seems pretty unwieldy. Let's see what happens if we assume y=0

Isprr ~ I(0) x e(VRo—1)vt

®S0, in comparison with SIR model, invasion speed in SEIR model scales
with vRg




BRSIEINY ASION PHASESSIE

10° 10°
Latent period, 1/(c+u), (days)

BIERIVING EXPRESSIONSFES
Ro

. Examine eigenvalues at disease-free equilibrium
» Show system has two eigenvalues, A=-u and A=(y+u)

(B/Crrw)-1)

* Aslong as B/(y+w)>1, disease-free equilibrium is
unstable and pathogen successfully invades

2. Use “next generation method” or “Spectral Radius
method” (see Diekmann et al. 1990; ). Math. Biol. and
Heffernan et al. 2005; . R Soc. Interface)




NEXT GENERATION METSi

» Useful when host population can be split into disjoint categories
(representing epidemiological complexities)

* Establishes # of transmissions generated by typical infected in
susceptible population

Sl s — D¢ G, .-, X | represent i infectedii@st:
compartments

e Denote y = {y,, Yy ..., Yt represent m other host
compartments

NEE GENERATION MEISEIN

chi = Fi(z,y) = Vi(z,y) i=1,..., n
dy; |
d—tj =G;(=,y) i=1,..., m

 F. = rate at which new infecteds enter compartment i

-\/i = transfer of individuals out of and into ith compartment




Ao MIEIROIN (S

. FilOy) = Vi(Oy) =0 v y>0
(no new infections If no infecteds)

Il. Fixy) =20vx=0andy =0
(no new infections if no infecteds)

I Vi(Oy) < 0Vyi= 0

(if compartment empty, can only have inflow)

MeDiVicxy) =2 0vx=0andy = 0
(sum is net outflow)

V. System y' = G(0,y) has unique asymptotically stable equilibrium, y*

dS

dt
dl

dt
dR

dt

SIS MIOIDIEL

Here,n=1, m=2,x=I,y = (5R)

=p—pSI—uS

F1 = BSI
= [POU —qul it Vi=(p+7)1
g G1=p—BSI—pS

Go =1 — pR




LINEARIZATION

General system

dCBi A
= fz(a’}, y) = VZ(QL’, y) |:1,..., n
dt
dy; .
.
can decouple x-system from y-system dx

when close to disease-free equilibrium, y*  d¢ —

wihiere F andV are n x n matrices;

OF; -
s (0y) Vij

) = a—xj(oay )

NEE GENERATION MEISEIN

dx

B e

e ( W e
If F=0 (no new infections), x = x(0)et,

Expected number of secondary cases produced by an initial case is

/OOO Fe Viz(0)dt = F(/OOO ewdt)az(()) — FlVamsii)

Next Generation Matrix, K=FV-!,

Entry Kj represents expected number of secondary cases in
compartment i by an individual in compartment |




NEXT GENERATION METSi

» Next generation operator (FV-!) gives rate at which
individuals in compartment j generate new infections in
compartment i times average length of time individual
spends in single visit to compartment |

* R, Is given by dominant eigenvalue (or ‘spectral radius’, p)
of FV-llie Ro = p(FV'") = p(K)

SIS MIOIDIEL

Here, n=1[, m=2, =[5 2 ==
%zu—BSI—uS &
al ST 7 I e
L v =
@:’YI—MR L= — E5 — 1S
& Go =4I — uR
Ror o
i | o A
Hence, Ry = g




NEXT GENERATION METSi

* SEIR equations (again):

ds

— = I+n)s§

a U~ (B W :

(JdE ‘

—=BIS-(uW+0)E | n=>2
o — We deal with these two
| % _ o () 'Infected’ compartments

How do we use Next Generation Method to
work out R, for this model?

NEE GENERATION MEISEIN

* Write down matrix F, which defines rate of new infections in
different compartments, differentiated with respect to E and
| and evaluated at disease-free equilibrium

= 351 S

——=u-(BI+w)s
FQIO jt
E

e (8(581) B(BSI)) Z=B[S_(M+O)E
dl

—=0E-(u+y)I

g 0bsty _ 08y & ()




NESE GENERATION MEISEIN

* Now, we write a new matrixV that defines rate of
transfer of infectives from one compartment to another

"1 = DB - pr+ws
Vo= (p+7I—0E o
§=BIS—(M+0)E
i 0
W= ( —0 ,u—l—q/) %=0E-(M+Y)I

NEE GENERATION MEISEIN

a

e Recall that inverse of (

b) (d ]
/— ad —bc\-c a/_

&

So, we get:

(u+7)(u+0) (u+v)(n+o)

1 (0% <+“>+<'y+> 0
—E B u-Fe
ey _(oo) Rl




NEXT GENERATION METSi

g Bo B(ut+o)
FV 5 — ( (u+7)0(u+0) (u+7)0(u+0) )

This is Next Generation Operator. Ro given by largest eigenvalue
of this matrix:

Bo o B(uto)
FVY = |Eere) ~ Y Gt
0 0— A
po
R —
(w+y Nu+o)

Check:o = o0, R, = B/(u+y) as for SIR model

BEETURE SUMMARGES

* Linear Stability Analysis

o SIR/SEIR endemic egm stable if R, > |

» Approach to egm via damped oscillations
* Period given by 2t v/(AG)

* Adding latent period, SEIR model

 Affects speed of epidemic take-off

» Next Generation Method to derive expression for Ry, for
any model




@ 5> CHALLENGENSIN
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Prase,  Asymplomatic Fiase
Model needs to O
consider infectivity of |
different stages and T S
respective durations :

Fauci et al. 1995; Ann Intern Med

@y o5 CHALLENGE: HIV PROGRESS|E@HS

ﬁP Equations:
i ds
5 E=_(ﬁP1P+ﬂA1A)S
§ BA el 0
I E=(ﬁP1P+ﬁAIA)S_ ol p
o BT
s > infection fiind | e 6PIP o 6,4[,4
'or 1/0, ar
Show:
0

5D




BUINTEYOU'LL NEED TO KNGS

Gy D
=0y, —4;pdy,;
a, dy
i
a, dap - 1 a,, —ap
a a,, 10y —a1)ay | —ay ap

SOLUTION

o ) [ 5 ]
0 0 50,
Vl
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