
LECTURE 2
Equilibrium Stability Analysis & 

Next Generation Method

The death of an epidemic

In SIR equations, let’s divide equation for dX/dt by dZ/
dt:

! ! dX/dZ = - (β X Y/N)/(γY)
! ! !   = - R0 X/N

Integrate with respect to Z
X(t) = X(0) e –Z(t) R0/N

When epidemic is over, by definition, we have X(∞), 
Y(∞) (=0), and Z(∞)

X(∞) = N – Z(∞) = X(0) e –Z(∞) R0/N



The death of an epidemic

So, N – Z(∞) - X(0) e –Z(∞) R0/N = 0

Solve this numerically (‘transcendental’ equation)

Epidemic(dies(out(because(
there(are(too(few(infectives,(

not(because(of(too(few(
susceptibles

Kermack(&(McKendrick((1927)

Simple Epidemics

β 1/γ R₀

“Measles” 886 yr⁻¹ 0.019 yr 17

“Influenza” 180 yr⁻¹ 0.011 yr 2

“Chickenpox” 315 yr⁻¹ 0.022 yr 7

“Rubella” 200 yr⁻¹ 0.025 yr 5



Frequency- or Density-Dependent Transmission?

Assumed contact rate, κ, constant: ‘mixing’ is independent of 
population size: frequency-dependent transmission.  Reasonable?
If we assume contact rate to be κN (increases with ‘crowding’), 
then transmission rate is

dX/dt = -βXY
Called density-dependent transmission
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Does it Matter?

Again, pathogen invasion if dY/dt > 0
If initially everyone susceptible (X=N), 

$ $ $ βNY – γY>0 ⇒ Y(βN - γ) > 0
In this case, we define R0 = βN/γ, so need R0>1

!

Hence, for any particular β and γ, there’s now a threshold 
population density required for invasion



Incorporating virulence

Assume infectious individuals die at rate α

dY

dt
= . . .� �Y � ↵Y
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Transmission & R0
Density Dependent

β=0.0426, γ=24, α=18, μ=0.02
NT = 1000

NT

Frequency Dependent
β=426, γ=24, α=18, μ=0.02

No invasion threshold

FD transmission → pathogen can wipe out host

1



What should we do?

If population size doesn’t change, FD & DD 
equivalent (βFD = N x βDD)

Otherwise:
Frequency-dependence generally more appropriate 
in large populations with heterogenous mixing, 
STDs, vector-borne pathogens
Density-dependence representative of wildlife & 
livestock diseases (especially with smaller 
population sizes)

LONG-TERM DYNAMICS 

• So far, looked at start and end of a simple epidemic

• In other settings, would like to know systems dynamics in the 
long run

• Use equilibrium analysis



STDS AND SIS MODEL

X Y
Simple model for a non-immunising 
infection, that is only cleared through 
treatment

Recall that N=X+Y, so we can 
rewrite this system as

System reduced to a single 
state variable

What is R0 here?

dY

dt
= �(N � Y )

Y

N
� ⇥Y

dY

dt
= �Y (1� Y

N
)� ⇥Y

EQUILIBRIUM ANALYSIS
• Can study properties of model at equilibrium (setting rates 

of change = 0)

• Setting dY/dt =0, we get
$ $ β(N-Y)Y/N - γY = 0,
! So Y(β(N-Y)/N - γ) = 0

• Satisfied whenever Y=0 or Y=N - Nγ/β = N(1-1/R0)
• Eqm points are: 0 and N(1-1/R0)
• So, under what circumstances do we see each state?



STABILITY ANALYSIS
• So, we have two equilibria – one where pathogen persists 

and one where it is absent
• What are conditions that determine when we observe 

one or other?
• For answer to this question, we need to carry out linear 

stability analysis
• Basic idea is to start at an equilibrium point and introduce 

a slight change (a ‘perturbation’) and establish whether this 
perturbation grows (unstable) or decays (stable)

EQUILIBRIUM STABILITY

Stable Unstable Neutrally 
Stable

To#determine#stability#proper1es#of#equilibria,#we#
need#to#calculate#the#‘dominant#eigenvalue’

To determine stability properties of equilibria, we 
need to calculate dominant ‘eigenvalue’



• Assume we have a single state variable

• So, at equilibrium point Y*, f(Y*)=0
• Now, we’re interested in knowing what happens if we 

slightly ‘perturb’ equilibrium
• Let Y = Y* + y (y<<Y*), substitute in ODE 

LINEAR STABILITY ANALYSIS: 1-D CASE

dY

dt
= f(Y )

d(Y + y)

dt
=

dy

dt
= f(Y ⇤ + y)

LINEAR STABILITY ANALYSIS: 1-D 
CASE

• f(N*+n) can be expressed as a Taylor expansion

• Note: f’ means derivative of f with respect to Y
• We end up with a linear ODE, solution to which is

• f ’(N*) is ‘eigenvalue’ -- from now on, we’ll call it Λ
• Our perturbation, y(t), will 

1. Grow exponentially if Λ >0 (equilibrium Unstable)
2. Decay exponentially if Λ <0 (equilibrium Stable)

dy

dt
= f(Y ⇤) + yf 0(Y ⇤) + y2f 00(Y ⇤) + . . .

y(t) = y(0)ef
0(Y ⇤)t



TAYLOR EXPANSION

f(y)

y

f(Y*)

Y* Y*+y

f(Y*+y)

{
y

f ’(Y*)

≈f(Y*) + y f ’(Y*) + ...

SIS MODEL

• System is in equilibrium as long as
!Y* = 0 (or X* = N) ... ie DFE
!or Y* = N(1-γ/β) = N(1-1/R0)

f(Y ) = �Y (1� Y

N
)� ⇥Y

f 0(Y ) =
df(Y )

dY
= � � 2�

Y

N
� ⇥



SIS MODEL

So, when Y*=0, 
f’(0) = β-γ 
⇒<0 if γ>β or R0<1 

When Y*=N(1-γ/β), 
f’(Y*) = -β+γ 
⇒<0 if β>γ or R0>1

f 0(Y ) = � � 2�
Y

N
� �

STABILITY ANALYSIS
• Let’s do this in general terms
• For a system containing n state variables, we have

"Now, we perturb equilibrium (Ni = Ni*+xi, xi<<Ni*), Taylor 
expand fi() and ignore higher order terms (xi2, xixj etc)

"Growth of perturbations (xi, i=1,n) given by linear set of 
ODEs

Keeling & Rohani (2008) pp30-31
Excellent texts: Strang (1986) & Kreyszig (2010)



ADDING A LATENT PERIOD: SEIR MODEL

• Incorporating a latent period takes into account transition 
from infected but not yet infectious to infectious

Note:'S'+'E'+'I'+'R'=1

SEIR MODEL
•In qualitative ways, this addition makes little difference
•System still possesses two equilibria: DFE (1,0,0) and an 

endemic equilibrium

"Expression'for'R0'is'now



INVASION PHASE: SIR
• Consider Jacobian for SIR model, evaluated at disease free 

equilibrium

"We worked out that two eigenvalues are Λ1,2=-µ

"Third is Λ3=β-(µ+γ) = (R0−1)(µ+γ)

"So, initial dynamics of I class are driven by this largest eigenvalue (Λ3)'
and (assume µ is small) are given by

INVASION PHASE: SEIR
• If we do exactly same thing for SEIR model (straightforward but more 

involved), we get

"So, in comparison with SIR model, invasion speed in SEIR model scales 
with √R₀

"This seems pretty unwieldy.  Let’s see what happens if we assume γ=σ

ISEIR ⇡ I(0) · e
1
2

�
�(�+�)+

p
4(R0�1)��+(�+�)2

�

ISEIR ⇡ I(0)⇥ e(
p
R0�1)�t



THE INVASION PHASE: SEIR

DERIVING EXPRESSION FOR 
R0

1. Examine eigenvalues at disease-free equilibrium
• Show system has two eigenvalues, Λ=-µ and Λ=(γ+µ)

(β/(γ+µ)-1)

• As long as β/(γ+µ)>1, disease-free equilibrium is 
unstable and pathogen successfully invades

2. Use “next generation method” or “Spectral Radius 
method” (see Diekmann et al. 1990; J. Math. Biol. and 
Heffernan et al. 2005; J. R. Soc. Interface)



• Useful when host population can be split into disjoint categories 
(representing epidemiological complexities)
• Establishes # of transmissions generated by typical infected in 

susceptible population

• Denote x = {x1, x2, …, xn} represent n infected host 
compartments
• Denote y =  {y1, y2, …, ym} represent m other host 

compartments

NEXT GENERATION METHOD

• Fi = rate at which new infecteds enter compartment i

• Vi = transfer of individuals out of and into ith compartment

NEXT GENERATION METHOD

i=1,...,&n

j=1,...,&m

dxi

dt

= Fi(x, y)� Vi(x, y)

dyj

dt

= Gj(x, y)



ASSUMPTIONS
I. Fi(0,y) = Vi(0,y) = 0 ∀ y>0

(no new infections if no infecteds)

II.  Fi(x,y) ≥ 0 ∀ xi ≥ 0 and yi ≥ 0
(no new infections if no infecteds)

III. Vi(0,y) ≤ 0 ∀ yi ≥ 0
(if compartment empty, can only have inflow)

IV. ∑i Vi(x,y) ≥ 0 ∀ xi ≥ 0 and yi ≥ 0
(sum is net outflow)

V. System y’ = G(0,y) has unique asymptotically stable equilibrium, y*

SIR MODEL

dS

dt
= µ� �SI � µS

dI

dt
= �SI � �I � µI

dR

dt
= �I � µR

Here, n=1, m=2, x=I, y = (S,R)

F1 = �SI

V1 = (µ+ �)I

G1 = µ� �SI � µS

G2 = �I � µR



can decouple x-system from y-system 
when close to disease-free equilibrium, y*

LINEARIZATION

i=1,...,&n

j=1,...,&m

dxi

dt

= Fi(x, y)� Vi(x, y)

dyj

dt

= Gj(x, y)

General system

dx

dt

= (F � V )x

where F and V are n x n matrices:

Fij =
@Fi

@xj
(0, y⇤) Vij =

@Vi

@xj
(0, y⇤)

NEXT GENERATION METHOD
dx

dt

= (F � V )x

If F=0 (no new infections), x = x(0)e-Vt.
Expected number of secondary cases produced by an initial case is
Z 1

0
Fe

�V t
x(0)dt = F

✓Z 1

0
e

�V t
dt

◆
x(0)= FV

�1
x(0)

Next Generation Matrix, K=FV-1.
Entry Kij represents expected number of secondary cases in 
compartment i by an individual in compartment j



• Next generation operator (FV-1) gives rate at which 
individuals in compartment j generate new infections in 
compartment i times average length of time individual 
spends in single visit to compartment j

• Ro is given by dominant eigenvalue (or ‘spectral radius’, ρ) 
of FV-1, ie R0 = ρ(FV-1) = ρ(K)

NEXT GENERATION METHOD

SIR MODEL

dS

dt
= µ� �SI � µS

dI

dt
= �SI � �I � µI

dR

dt
= �I � µR

Here, n=1, m=2, x=I, y = (S,R)

F =
@F1

@I
= � V =

@V1

@I
= µ+ �

F1 = �SI

V1 = (µ+ �)I

G1 = µ� �SI � µS

G2 = �I � µR

Hence, R0 =
�

(µ+ �)



• SEIR equations (again):

How do we use Next Generation Method to 
work out R0 for this model?

n=2
We deal with these two 
‘infected’ compartments

NEXT GENERATION METHOD

F =
⇣

@(�SI)
@E

@(�SI)
@I

0 0

⌘

F =
�
0 �S⇤

0 0

�
=

�
0 �
0 0

�

• Write down matrix F, which defines rate of new infections in 
different compartments, differentiated with respect to E and 
I and evaluated at disease-free equilibrium

NEXT GENERATION METHOD

F1 = �SI

F2 = 0



V =
� µ+� 0

�� µ+�

�

• Now, we write a new matrix V that defines rate of 
transfer of infectives from one compartment to another 

NEXT GENERATION METHOD

V1 = (µ+ �)E

V2 = (µ+ �)I � �E

FV �1 =
�
0 �
0 0

�✓ µ+�
(µ+�)(µ+�) 0

�
(µ+�)(µ+�)

µ+�
(µ+�)(µ+�)

◆

• Recall that inverse of is

So, we get:

NEXT GENERATION METHOD



FV �1 =
⇣

��
(µ+�)(µ+�)

�(µ+�)
(µ+�)(µ+�)

0 0

⌘

|FV �1| =

�����
��

(µ+�)(µ+�) � ⇤ �(µ+�)
(µ+�)(µ+�)

0 0� ⇤

�����

This is Next Generation Operator.  R0 given by largest eigenvalue 
of this matrix:

Check: σ →∞, R0 = β/(µ+γ) as for SIR model

NEXT GENERATION METHOD

• Linear Stability Analysis
• SIR/SEIR endemic eqm stable if R0 > 1
• Approach to eqm via damped oscillations
• Period given by 2π √(AG)

• Adding latent period, SEIR model
• Affects speed of epidemic take-off
• Next Generation Method to derive expression for R0 for 

any model

LECTURE SUMMARY …



CLASS CHALLENGE: HIV 
PROGRESSION

Fauci et al. 1995; Ann Intern Med

Model'needs'to'
consider'infec<vity'of'
different'stages'and'
respec<ve'dura<ons

CLASS CHALLENGE: HIV PROGRESSION

βP

βA

1/δP 1/δA

Time since 
infection
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Equations:

Show:

dS
dt

= ! !PIP +!AIA( )S

dIP
dt

= !PIP +!AIA( )S !!PIP
dIA
dt

= !PIP !!AIA

R0 =
!P
"P

+
!A

"A



HINT: YOU’LL NEED TO KNOW
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SOLUTION … C’TD
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