Introduction to scientific programming in R*

John M. Drake & Pejman Rohani

1 Introduction

This course will use the R language programming environment for computer modeling. The purpose
of this exercise is to introduce R. This exercise addresses only those features of R that are required
for this course. A more complete introduction and handy reference can be found on the Internet at
http://cran.r-project.org/doc/manuals/R-intro.html.

2 What is R?

R is both a “high level” computer language and a software platform for writing and executing programs
in that language. The structure of R is well suited to scientific programming. It efficiently performs
many, many numerical procedures, including many that are extremely useful for statistical analysis and
visualization. In what follows, we assume that the student has had no prior experience with R. The
goal of this session is to develop some facility with the tasks that will be needed later in this course.
Naturally, we do not aim to provide a comprehensive overview of either scientific programming or of
R. Rather, these exercises are intended to function as a starting point for further exploration and self-
study with an emphasis on applications and illustrations from theoretical epidemiology. All that is
required for completing the exercises is the “base” R program. RStudio, which may be downloaded from
http://rstudio.org, is recommended for those seeking a more featured development environment.

3 Assigning variables

If you have not done so already, open R. Whether on Mac, PC, or Unix/Linux you should be presented
with the console, a terminal-like interface with a command line. One way to interact with R is to submit
commands to the console. In R assignment is made with the expression <-. For instance, we assign the
value 10 to the variable a as follows.

> a<-10

In R numerical quantities may be stored as any of a variety of object types, including vectors, matrices,
data frames, time series and lists.

*Licensed under the Creative Commons attribution-noncommercial license, http://creativecommons.org/licenses/by-
nc/3.0/. Please share and remix noncommercially, mentioning its origin.

4 Navigating help

Before going further, it will be useful to know where to turn for help. If you just want to browse the
help, use the drop down menu. If you know the name of the command that you want help for then just
type the name of the command at the command line, preceded by a question mark. For instance, the
function 1m fits a linear model. Type ?1m to obtain the help for this command.

While some operations (such as assignment, reviewed above, and most numerical operations like +, -, *,
and /) are simply instructions, others are functions, that is subroutines that require inputs and return
outputs. The help on an R function explains what form these inputs/outputs must take as well as any
instructions needed for using the function. Help files often contain examples which can be consulted for
guidance on use.

Exercise 1. Look at the help for the function 1m and answer the following questions.

e What are the function inputs called in R terminology?
e What are the function outputs called in R terminology?
e What else does the help file tell you about 1m?

Exercise 2. Copy and paste the first seven lines from the example in the 1m help file. Type the following
commands into the console and view the output: 1m.D9, summary(1m.D9), attributes(1lm.D9). What
is being returned in each case? What is Im.D9?

5 Writing programs

Entering every command in the console is cumbersome. Typically, therefore, one works by writing
commands to a file (called a script) and either executes all the commands in the script in sequence using
the R function source or copies the commands from the script to the console using F5 or Ctrl-R. An
editing window can be opened from the File drop down menu. Commands written here may be saved as
plain text files with the file extension “.R”. Comments (i.e., text that should not be interpreted as code)
should be preceded by “#”.

You will find it useful to be able to write your own functions. This is accomplished using the R function
function. The function specification always comprises the same components: a name, assignments,
arguments (in parentheses), braces, and a value to return. For example, a function to add two numbers
and divide by a third might be specified as follows.

> my.functionl<-function(a,b,c){
+ tmp<-a+b

+ tmp2<-tmp/c

+ return(tmp2)
+

}

Using this function (two examples) we have:

> outl<-my.function1(4,7,2)
> outl

[1] 5.5

> out2<-my.functionl1(2,5,6)
> out2

[1] 1.166667

Of course, the functions we will typically want to create will be much more elaborate.

6 Adding packages

Base R comes with only so many functions. As special purpose functions are developed, they are
commonly compiled into libraries called packages. To use the functions available from a specific package,
the package must be downloaded and installed. Later in this module we will need a function (1lsoda)
for numerical integration of ordinary differential equations. 1soda is available in the package deSolve.
To install this package, run the command install.packages(’deSolve’) and choose a nearby mirror
site. Everything else should follow automatically.

Adding packages cannot be done in this way if you do not have read/write access to the default installa-
tion directory. In this case, a new installation directory can be created, for instance “C:\Users\Drake\R”
(example for Windows). The following code will make this directory the default for any future installa-
tions and add it to the search path (i.e., will instruct R to look there for libraries that might be required
to execute a program.)

> .libPaths(c("C:\\Users\\Drake\\R", .libPaths()))

You will want to add this line of code at the start of any of your programs.

7 Loading data

Data can be stored in lots of different ways. Accordingly, there are lots of different ways to load data into
R. For instance, you could type in all your data and place them in a vector using the generic “combine”
function c as follows.

> data.demo<-c(1,17,4,6) #create a data vector
> data.demo

[11] 117 4 6

Now is a good time to introduce an important aspect of referencing and a trick. First referencing. When
you have a vector and want to refer to just a part of it you indicate this with square brackets listing the
element numbers. For instance, to refer to the third element of data.demo we type

> data.demo [3]
[1] 4

to refer to the first through third elements we type

> data.demo[1:3]

[1] 117 4

and to refer to the first, second, and fourth elements we type
> data.demo[c(1,2,4)]

[1] 117 6

When data are stored as a matrix or a data frame we use two values corresponding to the row number
and column number as follows.

> data.demo2<-matrix(c(4,7,89,3,4,4,15,0,1) ,nrow=3) #create a data matrix
> data.demo2[1:2,3]

[1] 15 ©

with the following concise notation when we want all the elements of a give row or column referenced.
> data.demo2[, 3]

[1] 15 0 1

Now the trick. If we want to create an object with nothing in it (perhaps as a storage place for future
use), we just combine with no argument, i.e., c().

Now, back to data entry. For research purposes, it is often most convenient to enter data into a spread-
sheet or database management software and then save as comma-separated flat files with a “.csv” ex-
tension. Then, the data are read into R using the function read.csv. For the purposes of this class, we
have provided a number of datasets that are already stored in R formats. These may be found in the
file “data.RData”. To read into R enter the following command.

> load('data.RData')

Now that the data have been read into memory, they are available for use. To see everything that’s in
memory at the present time, enter the command 1s(). We can inspect the influenza dataset by typing
its name into the console.

> flu

flu

o
o
<

28
76
222
293
257
237
192
126
70
28
12

© 00 NO O WN -
O 00 NO O WN -

s
VI S I N e
s
> W NN R O
(é2)

These data (and the other three datasets included here) are stored as an R object called a data frame.
The data frame allows us to store a table of data, the columns of which may have different formats (e.g.,
numerical, categorical, etc.). The data frame is one class of R objects that is commonly used. In this
course we will use mainly data frames and numerical objects (vector and matrices) though there are
many, many kinds of R objects, some of which are very flexible (e.g., lists) and some of which have very
specific uses (e.g., time series).

What do the data represent? These data are from an outbreak of influenza in a British boarding school
in 1978 (Anonymous 1978). There is a unique entry in the variable day for each day of the outbreak.
The variable £f1lu contains the corresponding number of boys confined to bed. We can plot these data
using the following command.

> plot(fluday,fluflu, type='b',xlab='Day',ylab='New cases')

300
I

250
|
/

200
|
o
/

New cases
150
|

100
I

e

Day

We learn a number of things by studying this code. First, a single variable can be referenced by typing
the name of the data frame (e.g., £1u) followed by the name of a variable (e.g., day) separatated by
a dollar sign. This allows us to extract, manipulate, assign variables independently. For instance, the
following lines creates a new object (a vector), called prevalence, by extracting flu cases and dividing
through by a presumed population size of 764 (763 boys “at risk” plus index case).

> prevalence<-flu$flu/764
> prevalence

[1] 0.003926702 0.010471204 0.036649215 0.099476440 0.290575916 0.383507853
[7] 0.336387435 0.310209424 0.251308901 0.164921466 0.091623037 0.036649215
[13] 0.015706806 0.006544503

The next thing to notice about our plot command is that the first two arguments are not names. Rather,
plot just assumed that the first two arguments should be placed on the x-axis and y-axis respectively.

If we switch the sequence, we obtain the following plot.

> plot(fluflu,fluday, type='b',xlab='Day',ylab='New cases')

S 4 o

\

o
84 o

\o
S - T
\O

0 — \O

New cases

I I I I I I I
0 50 100 150 200 250 300

Day

Alternatively, the order doesn’t matter if we specify which value is which argument, i.e., the following
line reproduces the original plot even though the x and y arguments are out of sequence.

> plot(y=flu$flu,x=flu$day, type='b',xlab='Day',ylab='New cases')

300
I

250
|
/

200
|
o
/

New cases
150
|

100
I

e

Day

Finally, we see that plot may take additional arguments (indeed, many more arguments than those used
here are possible). Here we specify the type of plot and labels for the x and y axes.

Exercise 3. The plots generated above consist of "b’oth points and lines, hence the argument type=’b’.
Retrieve the help for the plot function and try some of the other plot types, e.g., line plot and point
plot.

The function plot is intended only for producing scatterplots (in several flavors). Other functions are
available for other kinds of plots, including hist to generate histograms and boxplot to generate box
and whisker plots. Additionally, all aspects of the image may be manipulated (e.g., line thickness,
colors, fonts, etc.) with greater or lesser difficulty depending on how deeply related they are to the plots
design. Also, lines and points may be added to an existing plot using the functions lines and points,
respectively.

Exercise 4. Experiment with the functions plot, and points by plotting the measles incidence data
from three different sites in the city of Niamey, Niger in different colors on the same figure.

8 Control statements

Control statements are used to determine the flow of a computer program. Control statements include
conditional commands (i.e., if and else) and the commands that allow looping. Often, effective use of
control statements requires grouping. Grouping is achieved by enclosing a set of codes in curly braces
{ }. The value of the group is not determined until all the enclosed statements are evaluated, at which
point the value is given by the last expression in the group. Note that we have already used grouping in
function definition above.

Conditional execution in R is achived using the if statement, optionally followed by else. Repeated
evaluation is typically performed with a for loop. The use of these control statements is easiest to learn
from illustration. For instance, the following code shows both grouping and the use of if and else.

a<-5

if(a<1){
b<-5
c<-4

} else {
b<-10

V+ 4+ + + + VYV

}
b

(1] 10

Here we look at a simple for loop.

a<-c()

for(i in 1:10){
ali]<-i~3

}

a

vV + + Vv VvV

[1] 1 8 27 64 125 216 343 512 729 1000

9 Random number generation

We conclude this session with an introduction to (pseudo-) random number generation in R. Both sta-
tistical analysis and numerical simulation can require random number generation and R is enabled to
generate random numbers from any of a large number of distributions, including beta, binomial, Cauchy,
chi-squared, exponential, Fisher, gamma, geometric, hypergeometric, logistic, lognormal, negative bino-
mial, normal (Gaussian), Poisson, Student t, uniform, and Weibull. Each of these distributions has an
abbreviated “code name”. For instance, for the normal distribution it is norm and for the uniform it is
unif. Generating random numbers with these distributions is achived by prefixing the code name with
the letter “r” so that generation of uniform random numbers is done with the function runif, generation
of normally distributed random numbers is done with the function rnorm, and so forth. When used,
the first argument will be the number of random numbers to be generated. Other arguments are the
parameters of the distribution. So, for example, the following code generates 3 random numbers from a
normal distribution with mean 5 and standard deviation 3.

> random.numbers<-rnorm(3,mean=>5, sd=3)
> random.numbers

[1] 3.547424 5.838767 2.264893

In a later session we will generate random numbers from the exponential distribution with the function
rexp. This distribution has only one parameter, the rate, which is also the reciprocal of the mean.

Exercise 5. Generate one hundred random numbers and plot a histogram.

10

