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Controlling Information Transfer on a Network

Networks pervade many areas of science [5] and provide the foundation
for modeling the evolution of complex systems. We are often interested in
how these systems evolve over time and seek a deep understanding of
information exchange throughout the network. Examples include social
networks, computer networks, ecological food webs, and infectious
diseases. We are interested in understanding the dynamics of these
complex systems and using this knowledge to control the spread of
diseases.

The Ebola outbreak in West Africa began in December of 2013. As
of January 16, 2015, there were over 21 thousand cases of Ebola with
nearly 8.5 thousand deaths [3]. This more than deadly disease in West
Africa poses a serious threat to regional and global public health.
Consequently, the ability to contain the spread of Ebola is imperative.
Managing the spread of a disease is a complex decision making problem
with both spatial and temporal components. Developing optimal
strategies for controlling complex systems, such as Ebola, requires solving
a sequential decision making problem that is complicated by extremely
high dimensions.

Observed Data

The Ebola outbreak in West Africa consists of two waves. Infections prior
to May 2014 are considered part of the first wave. Two regions in Guinea,
Guéckédou and Conakry, maintained the infection between waves. For
Analysis, the infection is treated as beginning in these two regions on
April 26, 2014.
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Figure: Day infected starting from April 26, 2014

Goals

1. Define a class of rich and interpretable treatment strategies.

2. Using scientific knowledge of the system, develop a low-dimensional
parametric model of the system dynamics and estimate optimal strategy
using simulation based optimization.

3. Construct a semi-parametric estimator of the optimal strategy using a
Q-learning based approach minimizing the Bellman residual.

4. Stabilize the semi-parametric approach with a low-dimensional
parametric anchor.

Notation

I Let T = {1, 2, . . .} be the set of decision points. Let L = {1, . . . , L} be
the set of locations in the network.

I At each t ∈ T , collect state information S t = {S t
`, . . . ,S

t
L} where

S t
` ∈ Rp.

I At each t ∈ T , choose actions At ∈ {0, 1}L.
I A decision strategy π is a mapping from supp S → BL where BL is the

set of all {0, 1}L valued random variables.
I Let Y t

` ∈ R be the outcome at time t for location `.
I The optimal strategy πopt ∈ Π satisfies,

E

∑
t≥1

γt−11ᵀY t(πopt)

 ≥ E

∑
t≥1

γt−11ᵀY t(π)


for all π ∈ Π where Y (π) is the potential outcome under π.

I Goal: estimate πopt

Low-Dimensional System Dynamics Model (M1)

I Assume the system is Markov and let f (y t|s t,at;ψ) and
g(s t|s t−1,at−1; θ) be postulated parametric distributions for Y t and S t

respectively.
I Under the assumed model and strategy π, define

V T (π;ψ, θ) =
∫ (∑T

t=1 γ
t−11ᵀy t

)∏T
t=1

{
f (y t|s t,at;ψ)

g(s t|s t−1,at−1)P [π(s t) = at]
}
dλ(yT , sT ,aT )

to be the expected discounted reward until time T .

Low-Dimensional System Dynamics Model (M1) cont.

I If the model is correct, πoptM1 = arg max
π∈Π

limT→∞V T (π;ψ∗; θ∗) where ψ∗

and θ∗ are the true parameters.
I Approximate optimal strategy using estimates ψ̂ and θ̂ and large T ,

π̂optM1 = arg max
π∈Π

V T
M1(π; ψ̂; θ̂).

I Estimate V T
M1(π; ψ̂; θ̂) using Monte Carlo integration.

I (M1) provides a low-variance estimator of πopt, but quality depends on
the postulated system dynamics model.

Semi-Parametric Q-Learning Based Model (M2)

I Rather than parameterizing the entire system dynamics model, as in
(M1), it is sufficient to model the Q-function, Qπ(s,a), defined as

Qπ(s,a) = Eπ
∑

k≥1

γk−11ᵀY t+k−1|S t = s,At = a

 .
I Use the Bellman equation [6]

E
[
1ᵀY t + γQπ(S t+1, π{S t+1})− Qπ(S t,At)

]
= 0

to construct an estimating equation for Qπ(s,a).
I Assume the Q-function is additive across locations,

Qπ(s,a) =
∑

`∈LQ`(s,a; βπ` ).
I Define an estimating equation ΛT (β, π) as

ΛT (β, π) = Eπ
∑T−1

t=1

[ ∑L
`=1(Y t

` + γQ`{S t+1, π[S t+1]; β`}

−Q`{S t,At; β`})∆βQt

]
where ∆βQt = {∆β1Q

ᵀ
1 (S t,At; β1), . . . ,∆βLQ

ᵀ
L (S t,At; βL)}ᵀ and Eπ

denotes expectation with respect to the distribution of π(·) only.

I Define β̂π,τ = arg minβ‖ΛT (β, π)‖2
2 + τJ(β) where J(β) is a spatially

explicit penalty smoothing over locations.
I The estimated optimal strategy as

π̂optM2 = arg maxπ∈ΠQ(s, π{s}; β̂π,τ).

I (M2) provides an estimator of πopt that is consistent under weaker
conditions than (M1), however, it requires more data to provide a high
quality estimator.

Anchoring (M2) with (M1)

I (M1) provides a stable low-variance treatment strategy, however the
assumed system dynamics model from (M1) is almost surely misspecified.

I We propose (M2), a more flexible strategy consistent under weaker
assumptions.

I Combining both strategies, we use (M1) when data are scarce to make
reliable decisions, then at subsequent decision points test the
performance of (M1) and (M2) to determine when (M2) has sufficient
information for training.

I Under the hypothesis that the system dynamics model from (M1) is
correctly specified, generate the null distribution of the Q-function and
compare the observed value against the 95th percentile.

Priority Score

I Define R = {R(s,a; η); η ∈ E} where each element is a mapping
supp S t×{0, 1}L→ RL. If location j is treated, then Rj(s,a; η) = −∞.

I For non-negative integers m,M define

U t
` (s,a; η,m,M) = 1

{
R`(s,a; η + ξtM) ≥ R(m)(s,a; η + ξtM)

}
where {ξtj }j≥1 are independent Gaussian random variables.

I At time t assume budget C t, for some k ≤ C t, π(j)(s; η) is a random
binary vector uniformly distributed on

{ a ∈ {0, 1}L : aᵀ1 = bjC t/kc, (1− a)ᵀπ(j−1)(s; η) = 0,
diag(a) · U t(s, π(j−1)[s; η],C t − b(j − 1)C t/kc, j1) = π(j−1)(s; η)}

for j = 1, . . . , k and π(0) = 0.
I One possible priority score form is R`(s,a; η) = φ`(s,a)ᵀη where φ` is a

vector of features for location ` containing relevant information about
the system.

Features

I The features provide flexibility to the class of strategies. Construction of
features should use existing scientific knowledge and theory to maximize
the potential.

I Our features are functions of:
. Model based predictions of spread for the disease

I Estimate under multiple models to increase robustness
. Measures of centrality [2] and data depth [4]
. Quantitative summaries of density to account for spill-over effect

Simulation Experiment: Ebola

I Goal: compare the performance of (M1) using a priority score based
strategy against heuristic and myopic strategies.

I Setup:
. Simulate 257 days of disease spread.
. Constant generative model.
. Total 16 regions treated, 8 preventative and 8 active.
. Minimize expected proportion of infected regions after 257 days.
. 300 Monte Carlo replications.
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Figure: Simulation results for West Africa Ebola outbreak

Simulation Experiment: Toy Structures

I Running simulations on toy structures can provide important additional
information. In this setting, the network structure is known and specific
structural features can be incorporated.

I The chosen structure is known as scale-free [1]. The defining
characteristic is the proportion of locations with k edges decays
exponentially with k . Many networks, such as the web, exhibit this
property and contain locations that are much more highly connected.

I Setup:
. 100 locations.
. Simulate 15 steps of disease spread.
. Constant generative model.
. Total 6 locations treated, 3 preventative and 3 active.
. Minimize expected proportion of infected locations after 15 steps.
. 300 Monte Carlo replications.
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Figure: Network map of the toy structure
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Figure: Simulation results for toy structure
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