
MATHEMATICAL MODELS OF 
INFECTIOUS DISEASES 

Pej Rohani & John Drake

Odum School of Ecology
University of Georgia



Total mortality

Infant mortality

Measles & pertussis account for 
~300,000 and ~200,000 annual deaths

GLOBAL CAUSES OF MORTALITY



Vaccines & Drugs

Medicine

Microbiology

ImmunologyGenomics

But these approaches don’t address 
important questions at population 

level ...

MULTIFACETED APPROACH TO 
UNDERSTANDING INFECTIOUS DISEASES



EMERGING PATHOGENS



Boarding	  School,	  England
Jan	  1978
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Raises	  numerous	  ques@ons:
• What	  is	  e@ological	  agent?
• Is	  it	  novel?
• Is	  a	  vaccine	  available?
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SCHOOL OUTBREAK
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What	  
determines	  
invasion?

What	  does	  	  
growth	  rate	  
tell	  us?

Why	  does	  
epidemic	  
turn	  over?

Why	  did	  it	  
go	  ex@nct?

MODELING QUESTIONS I.  
BASICS



When	  is	  it	  
best	  to	  

implement	  
controls?

How	  
dras@c?

Random	  or	  
aimed	  at	  age/
core	  group?

How	  to	  prevent	  
invasion/
reinvasion?

Is	  it	  
evolving?

Drugs,	  Vaccines	  
or	  other	  control	  

measures?

How	  to	  
prevent	  
spa@al	  
spread?

Probability	  of	  
invasion	  or	  
ex@nc@on

MODELING QUESTIONS II. 
CONTROL IMPLICATIONS



WHAT IS A MODEL?

Different types of models:
A mathematical/computational model is an abstract model 
that uses mathematical language to describe the behaviour of a 
system 
A Statistical model attempts to describe relationships between 
observed quantities and independent variables

Developing a mechanistic model is different from statistical 
analyses of data



Reality Conceptualization

Abstraction

Purpose Components

Assumptions Limitations Validation

Interpretation

ABSTRACTION



WHAT’S A ‘GOOD’ MODEL?

Choice of model depends crucially on focal question and available 
data (hammer & chisel or pneumatic drill?)

Use model principally for
understanding nature
making predictions



JUDGING A MODEL…

Three fundamental features of models, often opposing forces:
Accuracy

Capture observed patterns (qualitative or quantitative?) and make 
predictions
Increases with model complexity

Transparency
Ability to understand model components
Decreases with model complexity

Flexibility
How easily can model be adapted to new scenarios?
Decreases with model complexity



Solution tools
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REALISM VS TRANSPARENCY



Ready-‐Made	  So+ware
ModelMaker
www.modelkine@x.com/modelmaker/modelmaker.html

Analy2cal	  Models
Concentrate	  on	  problems	  that	  can	  be	  expressed	  and	  
analysed	  fully	  using	  analy@cal	  approaches.

Problem-‐based	  Models
Construct	  most	  “appropriate”	  model	  and	  use	  
whatever	  combina@on	  of	  methods	  for	  analysis	  and	  
predic@on.

‘HOW’ DO YOU MODEL?

http://www.modelkinetix.com/modelmaker/modelmaker.html


GLOBAL SIMULATORS
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MATHEMATICAL MODELLING OF INFECTIOUS 
DISEASES

Objective 1: Setting up simple models 
Different transmission modes 

Basic Reproduction Ratio (R₀), Simple 
Epidemics, Invasion threshold & 
extinction

Stability analysis

Objective 2: Control
Infection management

Objective 3: Statistical estimation 
R0 and other parameters

Objective 4: Heterogeneities 
Risk structure
Age-structured transmission
Realistic pathogenesis
Seasonality

Objective 5: Sensitivity & Variability
Stochastic implementation
Parameter uncertainty



Formulate problem/objectives

Conceptual model diagram

Dynamic equations

Computer code

STEPS IN DEVELOPING A MODEL



THE SIMPLEST MODELS

Let’s develop a model for Boarding School influenza outbreak
Some important choices need to be made at outset

1. What do we want to keep track of?
Amount of virus in population?
Antibody titre of everyone in population (school)?
Cities in which infected people have been found?



Exposed/latent Infectious Recovered/Immune Infection statusSusceptible

Healthy Incubating Diseased Clinical status

Incubating Infectious, 
latent

Infectious, 
symptomatic

Infectious, 
quarantined

CATEGORISING INDIVIDUALS



THE SIMPLEST MODELS

Pragmatic choice: categorise individuals in population according to their 
infection status, eg:

Susceptible
Infectious
Recovered/Immune These are our 

“system variables”



THE SIMPLEST MODELS

2. What model structure?  
-- Determined by pathogen biology

Suscep@ble Infec@ous

Recovered

SI – signifies fatal infection

Suscep@ble Infec@ous SIR – recovery after infection

RecoveredSuscep@ble Infec@ous SEIR – latencyExposed

Suscep@ble Infec@ous SIS – no immunity elicited



THE SIMPLEST MODELS

2. What model structure?  
-- Determined by pathogen biology

Carrier

Suscep@ble Infec@ous SIR – with carriers

RecoveredSuscep@ble Infec@ous

Vectored transmission

Exposed

Recovered

Suscep@bleInfec@ous Exposed



THE SIMPLEST MODELS

What model structure?
Depends on what do we know about the pathogen (eg, influenza)

It’s directly transmitted (aerosol)
An acute infection
Lifelong immunity (to that strain)

Suscep@ble Infec@ous Recovered

Transmission Recovery



THE SIMPLEST MODELS

Flow between classes/compartments determined by details of host population 
structure and pathogen biology

Host population size
Contact rates
Pathogen infectivity

These are our “parameters”

Suscep@ble Infec@ous Recovered

Transmission Recovery



THE SIMPLEST MODELS

3. Deterministic or stochastic?

Deterministic 50 independent 
stochastic 
realizations

On average, stochastic simulations identical to deterministic 
predictions, though individual realizations may be quite different
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REALISM VS TRANSPARENCY



THE SIMPLEST MODELS

We’ve settled on a deterministic SIR model – now what?

How do we write down some equations to describe spread of ‘flu in this 
population?
Assign each system variable a unique Roman letter, eg:

Susceptible, S (proportion) or X (number)
Infectious, I (proportion) or Y (number)
Recovered/Immune, R (proportion) or Z (number)

Assign parameters a unique (typically Greek) letter, eg:
Contact rate, κ
Pathogen infectivity, ν



VERY IMPORTANT!

NOTHING SPECIAL ABOUT MY CHOICE OF NOTATION – USE 
OF PARTICULAR LETTERS HIGHLY IDIOSYNCRATIC  

OTHER AUTHORS MAY USE DIFFERENT LETTERS TO 
DENOTE SAME VARIABLES OR PARAMETERS. 

YOU CANNOT AUTOMATICALLY ASSUME THAT β IN TWO 
DIFFERENT PAPERS MEANS THE SAME THING!



3. MODEL EQUATIONS



BATH TUB EXAMPLE

Let W(t) be amount of water in bathtub 
(ml)

Need a dynamic equation that tells us 
how W(t) will change through time

Water outflow 
rate, O(t)

Water inflow rate, 
I(t)

Consider a small time interval, δt

Then,

W(t+ δt) = W(t) + Inflow rate × elapsed time - Outflow rate × elapsed time



Water outflow 
rate, O(t)

Water inflow rate, 
I(t)

Rearrange

W (t+ �t) = W (t) + I ⇥ �t�O ⇥ �t

W (t+ �t)�W (t)

�t
= I �O

Left hand side is a difference quotient for derivative of W with 
respect to time

Let δt → 0 dW

dt
= I �O

BATH TUB EXAMPLE



MANY BATHTUBS = 
COMPARTMENT MODELS



MODEL EQUATIONS

If we knew Xt and Yt, could we predict Xt+δt and Yt+δt, where δt is 
some (very short) time later?

Xt+δt = Xt – (νκ δt) Xt Yt/N

Yt+δt = Yt + (νκ δt) Xt Yt/N - (γ δt) Yt 

And
Zt+δt = Zt + (γ δt) Yt 

ν is probability of transmission given contact
κ is contact rate



BASIC QUESTIONS?

Xt+δt = Xt – (β δt) Xt Yt/N

Yt+δt = Yt + (β δt) Xt Yt/N - (γ δt) Yt 

Zt+δt = Zt + (γ δt) Yt 

Average infectious period given by 1/γ [why?] 

β=νκ



Hence, probability density function is γe-γt

=
1

�

For a random variable x, with probability density function f(x), the mean is given by 
Z 1

0
xf(x)dx

I(t) = e��t

1 =

Z 1

o
ce��tdt =

c

�

Consider recovery of a single infectious individual

MEAN LIFE TIME CALCULATION



AN ODE MODEL

Consider the equation describing Susceptible dynamics
Xt+δt = Xt – (β δt) Xt Yt/N

Re-write as
Xt+δt - Xt = - (β δt) Xt  Yt/N

(Xt+δt – Xt)/ δt = β Xt Yt/N

By fundamental theorem of calculus, as δt → 0,
dX/dt = - β X Y/N



o By definition, X+Y+Z = N
o These equations describe rates of change in state variables
o Parameters β, γ represent instantaneous rates

dX

dt
= ��X

Y

N
dY

dt
= �X

Y

N
� �Y

dZ

dt
= �Y

AN ODE SIR MODEL



o These equations describe rates of change in state variables
o Parameters β, γ represent instantaneous rates

dX

dt
= ��X

Y

N
dY

dt
= �X

Y

N
� �Y

dZ

dt
= �Y

In my lectures (as in K&R 2008), 
variables X, Y & Z refer to the 

numbers of individuals in each class. 
Variables S, I, & R refer to the 

proportions of the population in 
each class 

AN ODE SIR MODEL



dX

dt
= ��X

Y

N
dY

dt
= �X

Y

N
� �Y

dZ

dt
= �Y

Important to notice: transmission rate is assumed to depend on 
frequency of infecteds in population (Y/N).  Hence, this is frequency-
dependent transmission

AN ODE SIR MODEL
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Infectious period (1/γ) = 3 days
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Transmission rate, 
β = 10 yr-1

Transmission rate, 
β = 50 yr-1

Transmission rate, 
β = 100 yr-1

Transmission rate, 
β = 200 yr-1

SIMULATING EPIDEMICS



MODEL DYNAMICS

As parameters are varied, model predicts different 
outcomes

Can we anticipate trajectories without resorting to 
numerical integration?

Question: under what conditions will an infectious 
disease invade a system?



THE INVASION THRESHOLD

When can an infectious disease invade a population? 

Initial conditions: X)0( = N, Y)0( = 1, Z)0( = 0 

Invasion only if dY/dt > 0 

ie,  βXY/N – γY > 0  ⇒ Y)βX/N - γ( > 0 

If and only if X/N > γ/β 

Since X=N, requires 1> γ/β 

Or β/γ > 1
Kermack	  &	  McKendrick	  (1927)



BASIC REPRODUCTIVE RATIO, R0

Ratio β/γ gives number of cases before infected individual recovers
Universally referred to as R0 or Basic Reproductive Ratio 

Definition: Number of secondary cases generated by a typical infected in an 
entirely susceptible population

R₀ < 1
No invasion

R₀ =4
Successful invasion



Infectious period (1/γ, days)
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R0 < 1

R0 AND MODEL PARAMETERS



Hepatitis C

Seasonal Influenza

1918 Influenza

Ebola

SARS 

Phocine Distemper

HIV (MSM)

HIV (FSW)

Mumps

Pertussis

R0 ESTIMATES OF R0



THE DEATH OF AN EPIDEMIC

In SIR equations, let’s divide equation for dX/dt by dZ/dt:
dX/dZ = - (β X Y/N)/(γY)

  = - R0 X/N

Integrate with respect to Z
X(t) = X(0) e –Z(t) R0/N

When epidemic is over, by definition, we have X(∞), Y(∞) (=0), and 
Z(∞)

X(∞) = N – Z(∞) = X(0) e –Z(∞) R0/N



THE DEATH OF AN EPIDEMIC

So, N – Z(∞) - X(0) e –Z(∞) R0/N = 0
Solve this numerically (‘transcendental’ equation)

Epidemic	  dies	  out	  because	  
there	  are	  too	  few	  infectives,	  

not	  because	  of	  too	  few	  
susceptibles

Kermack	  &	  McKendrick	  (1927)



β 1/Ɣ R₀

“Measles” 886 /yr 0.019 yr 17

“Influenza” 180 /yr 0.011 yr 2

“Chickenpox” 315 /yr 0.022 yr 7

“Rubella” 200 /yr 0.025 yr 5

SIMPLE EPIDEMICS



FREQUENCY- OR DENSITY-DEPENDENT 
TRANSMISSION?

Assumed contact rate, κ, constant: ‘mixing’ is independent of population 
size: frequency-dependent transmission.  Reasonable?
If we assume contact rate to be κN (increases with ‘crowding’), then 
transmission rate is

dX/dt = -βXY
Called density-dependent transmission

Popula'on	  Size

Co
nt
ac
t	  R

at
e κ

κN



DOES IT MATTER?

Again, pathogen invasion if dY/dt > 0
If initially everyone susceptible (X=N), 

βNY – γY>0 ⇒ Y(βN - γ) > 0
In this case, we define R0 = βN/γ, so need R0>1

Hence, for any particular β and γ, there’s now a threshold population 
density required for invasion



INCORPORATING VIRULENCE

Assume infectious individuals die at rate α

dY

dt
= . . .� �Y � ↵Y
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FD transmission → pathogen can wipe out 
host
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TRANSMISSION & R0



WHAT SHOULD WE DO?

If population size doesn’t change, FD & DD equivalent (βFD = N 
x βDD)
Otherwise:

Frequency-dependence generally more appropriate in large 
populations with heterogenous mixing, STDs, vector-borne 
pathogens
Density-dependence representative of wildlife & livestock 
diseases (especially with smaller population sizes)


