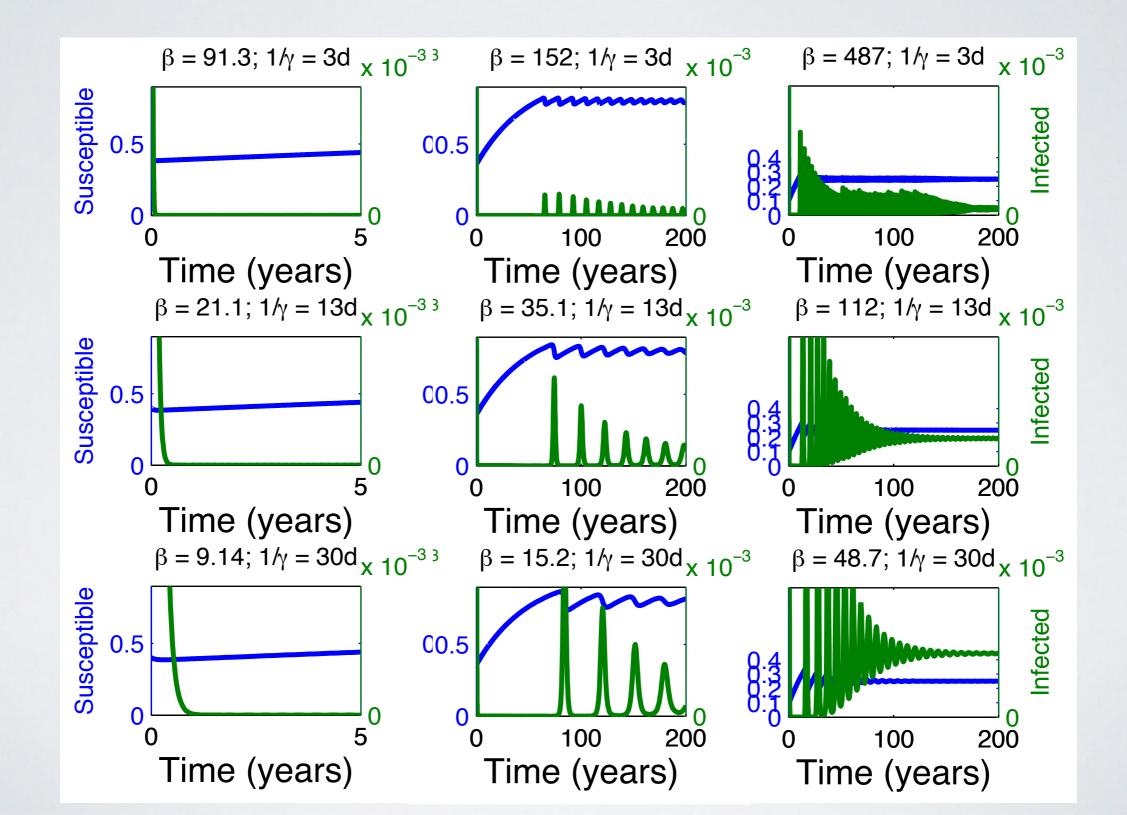
LECTURE 2

Equilibrium Stability Analysis & Next Generation Method

MODEL OUTPUT

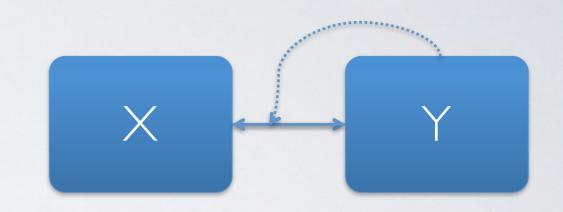


LONG-TERM DYNAMICS

- · So far, looked at start and end of a simple epidemic
- In other settings, would like to know systems dynamics in the long run
- Use equilibrium analysis

STDs AND SIS MODEL

Simple model for a non-immunising infection, that is only cleared through treatment



$$\frac{dX}{dt} = \gamma Y - \beta X \frac{Y}{N}$$
$$\frac{dY}{dt} = \beta X \frac{Y}{N} - \gamma Y$$

System reduced to a single state variable

What is R_0 here? $R_0 = \frac{\beta}{\gamma}$

Recall that N=X+Y, so we can rewrite this system as

$$\frac{dY}{dt} = \beta(N - Y)\frac{Y}{N} - \gamma Y$$

$$\frac{dY}{dt} = \beta Y (1 - \frac{Y}{N}) - \gamma Y$$

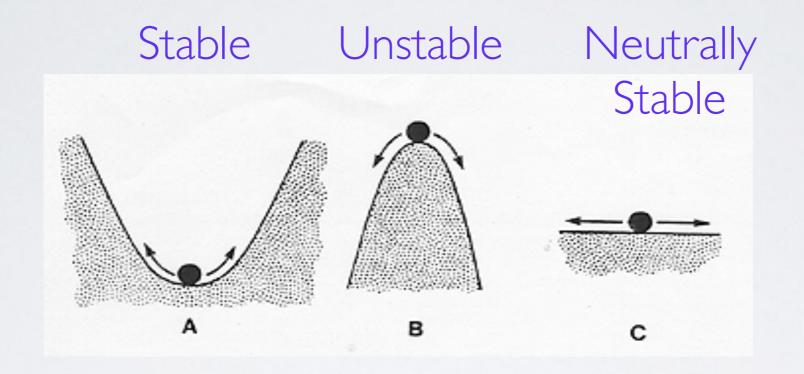
EQUILIBRIUM ANALYSIS

- Can study properties of model at equilibrium (setting rates of change = 0)
- Setting dY/dt =0, we get $\beta(N-Y)Y/N \gamma Y = 0,$ $So Y(\beta(N-Y)/N \gamma) = 0$
- Satisfied whenever Y=0 or Y=N N γ / β = N(1-1/R₀)
- Eqm points are: 0 and N(I-I/R₀)
- · So, under what circumstances do we see each state?

STABILITY ANALYSIS

- · So, we have two equilibria one where pathogen persists and one where it is absent
- What are conditions that determine when we observe one or other?
- · For answer to this question, we need to carry out linear stability analysis
- · Basic idea is to start at an equilibrium point and introduce a slight change (a 'perturbation') and establish whether this perturbation grows (unstable) or decays (stable)

EQUILIBRIUM STABILITY



To determine stability properties of equilibria, we need to calculate dominant 'eigenvalue'

LINEAR STABILITY ANALYSIS: I-D CASE

Assume we have a single state variable

$$\frac{dY}{dt} = f(Y)$$

- So, at equilibrium point Y*, f(Y*)=0
- Now, we're interested in knowing what happens if we slightly 'perturb' equilibrium
- Let $Y = Y^* + y$ ($y < < Y^*$), substitute in ODE

$$\frac{d(Y+y)}{dt} = \frac{dy}{dt} = f(Y^* + y)$$

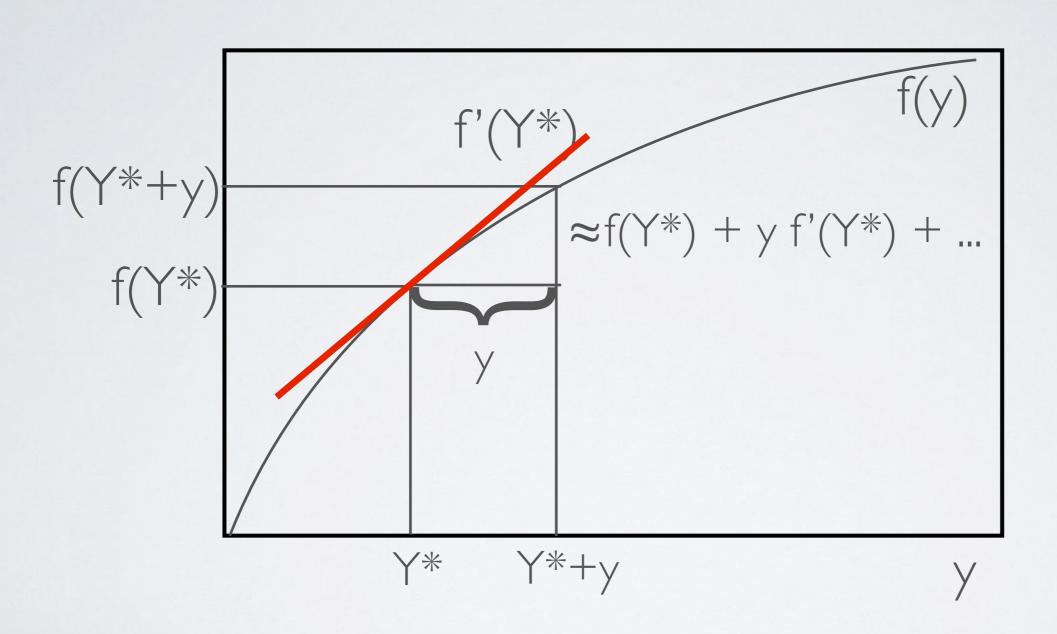
LINEAR STABILITY ANALYSIS: I-D CASE

f(Y*+y) can be expressed as a Taylor expansion

$$\frac{dy}{dt} = f(Y^*) + yf'(Y^*) + y^2f''(Y^*) + \dots$$

· Note: f' means derivative of f with respect to Y

TAYLOR EXPANSION



LINEAR STABILITY ANALYSIS: I-D CASE

f(Y*+y) can be expressed as a Taylor expansion

$$\frac{dy}{dt} = f(Y^*) + yf'(Y^*) + y^2f''(Y^*) + \dots$$

- · Note: f means derivative of f with respect to Y
- · We end up with a linear ODE, solution to which is

$$y(t) = y(0)e^{f'(Y^*)t}$$

- · f'(Y*) is 'eigenvalue' -- from now on, we'll call it \(\Lambda\)
- · Our perturbation, y(t), will
 - I. Grow exponentially if $\Lambda > 0$ (equilibrium Unstable)
 - 2. Decay exponentially if Λ <0 (equilibrium Stable)

SIS MODEL

$$\frac{dY}{dt} = \beta Y \left(1 - \frac{Y}{N} \right) - \gamma Y$$

· System is in equilibrium as long as

$$Y^* = 0$$
 (or $X^* = N$) ... ie DFE

$$\Rightarrow$$
orY* = $N(1-\gamma/\beta) = N(1-1/R_0)$

$$f(Y) = \beta Y (1 - \frac{Y}{N}) - \gamma Y$$

$$f'(Y) = \frac{df(Y)}{dY} = \beta - 2\beta \frac{Y}{N} - \gamma$$

SIS MODEL

$$f'(Y) = \beta - 2\beta \frac{Y}{N} - \gamma$$

- So, when Y*=0, $f'(0) = \beta - \gamma$ $\Rightarrow <0 \text{ if } \gamma > \beta \text{ or } R_0 < 1$
- When $Y^*=N(1-\gamma/\beta)$, $f'(Y^*) = -\beta+\gamma$ $\Rightarrow <0 \text{ if } \beta>\gamma \text{ or } R_0>1$

STABILITY ANALYSIS

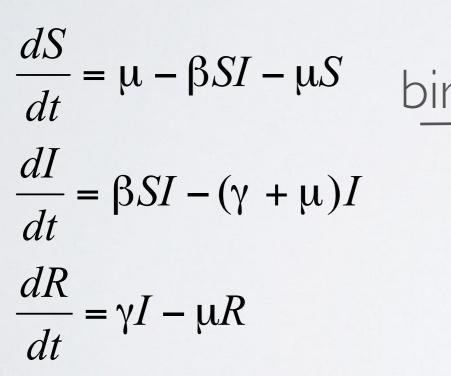
- Let's do this in general terms
- For a system containing n state variables, we have

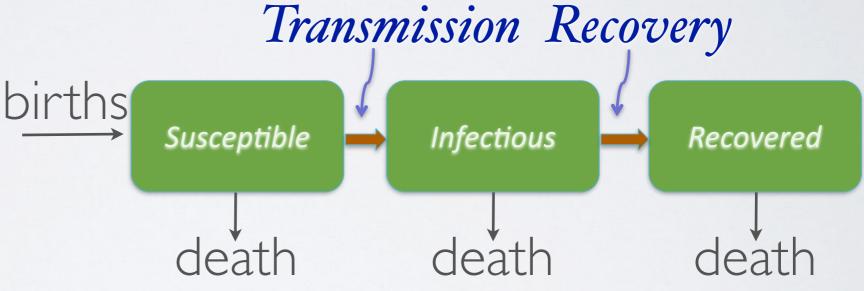
$$\frac{dN_i}{dt} = f_i(N_1, N_2, ..., N_n) i = 1, ...n$$

- Now, we perturb equilibrium $(N_i = N_i^* + x_i, x_i << N_i^*)$, Taylor expand $f_i()$ and ignore higher order terms $(x_i^2, x_i x_j)$ etc)
- Growth of perturbations $(x_i, i=1,n)$ given by linear set of ODEs

SIR MODEL WITH DEMOGRAPHY

 Move on to thinking about recurrent epidemics, facilitated by replenishment of susceptible pool via naïve births





- S+I+R = 1 $R_0 = \frac{\beta}{(\mu + \gamma)}$
- $\cdot \mu$ is both per capita host birth and death rate
- Population size assumed constant
- •Host life expectancy given by $1/\mu$

EQUILIBRIUM ANALYSIS - SIR

- Get $S^* = I/R_0$ and $I^* = \mu/\beta$ (R_0-I) (check)
- So, at endemic equilibrium, we have

$$(S^*, I^*, R^*) = \left(\frac{1}{R_0}, \frac{\mu}{\beta}(R_0 - 1), 1 - \frac{1}{R_0} - \frac{\mu}{\beta}(R_0 - 1)\right)^{\frac{1}{2}}$$

This equilibrium is only (biologically) feasible as long as $R_0>1$

Note: we also have $(S^*,I^*,R^*)=(1,0,0)$ This is called the <u>disease-free equilibrium</u> (DFE) stable only if $R_0 < 1$

ADDING A LATENT PERIOD: SEIR MODEL

• Incorporating a latent period takes into account transition from infected but not yet infectious to infectious

$$\frac{dS}{dt} = \mu - \beta SI - \mu S$$

$$\frac{dE}{dt} = \beta SI - (\sigma + \mu)E$$

$$\frac{dI}{dt} = \sigma E - (\gamma + \mu)I$$

$$\frac{dR}{dt} = \gamma I - \mu R$$

Note: S + E + I + R = 1

SEIR MODEL

- In qualitative ways, this addition makes little difference
- System still possesses two equilibria: DFE (1,0,0) and an endemic equilibrium

$$(S^*, E^*, I^*) = \left(\frac{1}{R_0}, \frac{\mu(\mu + \gamma)}{\beta \sigma}(R_0 - 1), \frac{\mu}{\beta}(R_0 - 1)\right)^{\frac{1}{j}}$$

Expression for R₀ is now

$$R_0 = \frac{\beta \sigma}{(\mu + \gamma)(\mu + \sigma)}$$

INVASION PHASE: SIR

Consider dl/dt for SIR model, evaluated at disease free equilibrium

$$\frac{dI}{dt} = \beta SI - (\mu + \gamma)I$$
$$= \beta I - (\mu + \gamma)I$$

• Can solve this wrt t

$$I_{SIR} \approx I(0) \times e^{\beta - (\mu + \gamma)t}$$

$$I_{SIR} \approx I(0) \times e^{\gamma(R_0 - 1)t}$$

INVASION PHASE: SEIR

 If we do exactly same thing for SEIR model (straightforward but more involved), we get

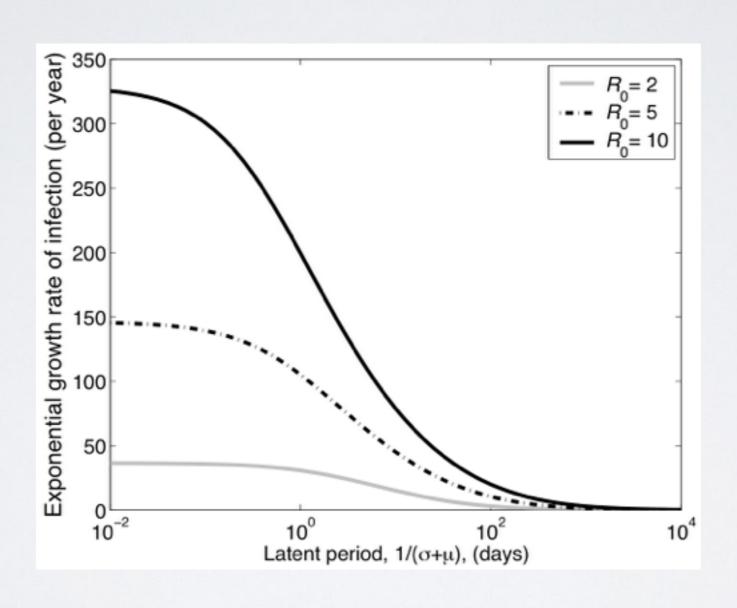
$$I_{SEIR} \approx I(0) \cdot e^{\frac{1}{2} \left(-(\sigma + \gamma) + \sqrt{4(R_0 - 1)\gamma\sigma + (\gamma + \sigma)^2} \right)}$$

This seems pretty unwieldy. Let's see what happens if we assume $\gamma = \sigma$

$$I_{SEIR} \approx I(0) \times e^{(\sqrt{R_0}-1)\gamma t}$$

So, in comparison with SIR model, invasion speed in SEIR model scales with $\sqrt{R_0}$

THE INVASION PHASE: SEIR



DERIVING EXPRESSION FOR

 R_0

- 1. Examine eigenvalues at disease-free equilibrium
 - Show system has two eigenvalues, $\Lambda = -\mu$ and $\Lambda = (\gamma + \mu)$ $(\beta/(\gamma + \mu) 1)$
 - As long as $\beta/(\gamma + \mu) > 1$, disease-free equilibrium is unstable and pathogen successfully invades
- 2. Use "next generation method" or "Spectral Radius method" (see Diekmann et al. 1990; *J. Math. Biol.* and Heffernan et al. 2005; *J. R. Soc. Interface*)

- Useful when host population can be split into disjoint categories (representing epidemiological complexities)
- Establishes # of transmissions generated by typical infected in susceptible population
- Denote $x = \{x_1, x_2, ..., x_n\}$ represent n infected host compartments
- Denote $y = \{y_1, y_2, ..., y_m\}$ represent m other host compartments

$$rac{dx_i}{dt} = \mathcal{F}_i(x,y) - \mathcal{V}_i(x,y)$$
 i=1,..., n $rac{dy_j}{dt} = \mathcal{G}_j(x,y)$ j=1,..., m

- \mathcal{F}_i = rate at which **new infecteds** enter compartment i
- V_i = transfer of individuals out of minus into *i*th compartment

ASSUMPTIONS

- $\mathcal{F}_i(0,y) = \mathcal{V}_i(0,y) = 0 \ \forall \ y>0$ (no new infections if no infecteds)
- II. $\mathcal{F}_i(x,y) \ge 0 \ \forall \ x_i \ge 0 \ \text{and} \ y_i \ge 0$ (no new infections if no infecteds)
- III. $V_i(0,y) \le 0 \ \forall \ y_i \ge 0$ (if compartment empty, can only have inflow)
- $\bigvee_{i} \sum_{i} \mathcal{V}_{i}(x,y) \ge 0 \ \forall \ x_{i} \ge 0 \ \text{and} \ y_{i} \ge 0$ (sum is net outflow)
- V. System y' = G(0,y) has unique asymptotically stable equilibrium, y^*

SIR MODEL

$$\frac{dS}{dt} = \mu - \beta SI - \mu S$$

$$\frac{dI}{dt} = \beta SI - \gamma I - \mu I$$

$$\frac{dR}{dt} = \gamma I - \mu R$$

Here,
$$n=1$$
, $m=2$, $x=1$, $y=(S,R)$

$$\mathcal{F}_1 = \beta SI$$
 $\mathcal{V}_1 = (\mu + \gamma)I$
 $\mathcal{G}_1 = \mu - \beta SI - \mu S$
 $\mathcal{G}_2 = \gamma I - \mu R$

LINEARIZATION

General system

$$rac{dx_i}{dt} = \mathcal{F}_i(x,y) - \mathcal{V}_i(x,y)$$
 i=1,..., n $rac{dy_j}{dt} = \mathcal{G}_j(x,y)$ j=1,..., m

when close to disease-free equilibrium, y* $\frac{dx}{dt} = (F - V)x$

$$\frac{dx}{dt} = (F - V)x$$

where F and V are n x n matrices:

$$F_{ij} = \frac{\partial \mathcal{F}_i}{\partial x_j}(0, y^*) \qquad V_{ij} = \frac{\partial \mathcal{V}_i}{\partial x_j}(0, y^*)$$

$$\frac{dx}{dt} = (F - V)x$$

If F=0 (no new infections), $x = x(0)e^{-Vt}$.

Expected number of secondary cases produced by an initial case is

$$\int_0^\infty F e^{-Vt} x(0) dt = F \left(\int_0^\infty e^{-Vt} dt \right) x(0) = FV^{-1} x(0)$$

Next Generation Matrix, K=FV-1.

Entry K_{ij} represents expected number of secondary cases in compartment i by an individual in compartment j

• Next generation operator (FV⁻¹) gives rate at which individuals in compartment *j* generate new infections in compartment *i* times average length of time individual spends in single visit to compartment *j*

• R_o is given by dominant eigenvalue (or 'spectral radius', ρ) of FV-1, ie $R_0 = \rho(FV^{-1}) = \rho(K)$

SIR MODEL

$$\frac{dS}{dt} = \mu - \beta SI - \mu S$$

$$\frac{dI}{dt} = \beta SI - \gamma I - \mu I$$

$$\frac{dR}{dt} = \gamma I - \mu R$$

Here, n=1, m=2, x=1, y = (S,R)
$$\mathcal{F}_1 = \beta SI$$

$$\mathcal{V}_1 = (\mu + \gamma)I$$

$$\mathcal{G}_1 = \mu - \beta SI - \mu S$$

 $\mathcal{G}_2 = \gamma I - \mu R$

$$F = \frac{\partial \mathcal{F}_1}{\partial I} = \beta$$
 $V = \frac{\partial \mathcal{V}_1}{\partial I} = \mu + \gamma$

Hence,
$$R_0 = \frac{\beta}{(\mu + \gamma)}$$

• SEIR equations (again):

$$\frac{dS}{dt} = \mu - (\beta I + \mu)S$$

$$\frac{dE}{dt} = \beta IS - (\mu + \sigma)E$$

$$\frac{dI}{dt} = \sigma E - (\mu + \gamma)I$$

n=2

We deal with these two 'infected' compartments

How do we use Next Generation Method to work out R_0 for this model?

• Write down matrix F, which defines rate of <u>new</u> infections in different compartments, differentiated with respect to E and I and evaluated at disease-free equilibrium

$$F_{1} = \beta SI$$

$$F_{2} = 0$$

$$F = \begin{pmatrix} \frac{\partial(\beta SI)}{\partial E} & \frac{\partial(\beta SI)}{\partial I} \\ 0 & 0 \end{pmatrix}$$

$$F = \begin{pmatrix} 0 & \beta S^{*} \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & \beta \\ 0 & 0 \end{pmatrix}$$

$$\frac{dS}{dt} = \mu - (\beta I + \mu)S$$

$$\frac{dE}{dt} = \beta IS - (\mu + \sigma)E$$

$$\frac{dI}{dt} = \sigma E - (\mu + \gamma)I$$

 Now, we write a new matrix V that defines rate of transfer of infectives from one compartment to another

$$V_{1} = (\mu + \sigma)E$$

$$V_{2} = (\mu + \gamma)I - \sigma E$$

$$\frac{dS}{dt} = \mu - (\beta I + \mu)S$$

$$\frac{dE}{dt} = \beta IS - (\mu + \sigma)E$$

$$V = \begin{pmatrix} \mu + \sigma & 0 \\ -\sigma & \mu + \gamma \end{pmatrix} \frac{dI}{dt} = \sigma E - (\mu + \gamma)I$$

Recall that inverse of

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

So, we get:

$$FV^{-1} = \begin{pmatrix} 0 & \beta \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \frac{\mu + \gamma}{(\mu + \gamma)(\mu + \sigma)} & 0 \\ \frac{\sigma}{(\mu + \gamma)(\mu + \sigma)} & \frac{\mu + \sigma}{(\mu + \gamma)(\mu + \sigma)} \end{pmatrix}$$

$$FV^{-1} = \begin{pmatrix} \frac{\beta\sigma}{(\mu+\gamma)(\mu+\sigma)} & \frac{\beta(\mu+\sigma)}{(\mu+\gamma)(\mu+\sigma)} \\ 0 & 0 \end{pmatrix}$$

This is Next Generation Operator. R₀ given by largest eigenvalue of this matrix:

$$|FV^{-1}| = \begin{vmatrix} \frac{\beta\sigma}{(\mu+\gamma)(\mu+\sigma)} - \Lambda & \frac{\beta(\mu+\sigma)}{(\mu+\gamma)(\mu+\sigma)} \\ 0 & 0 - \Lambda \end{vmatrix}$$

$$R_0 = \frac{\beta \sigma}{\left(\mu + \gamma \right) \left(\mu + \sigma\right)}$$

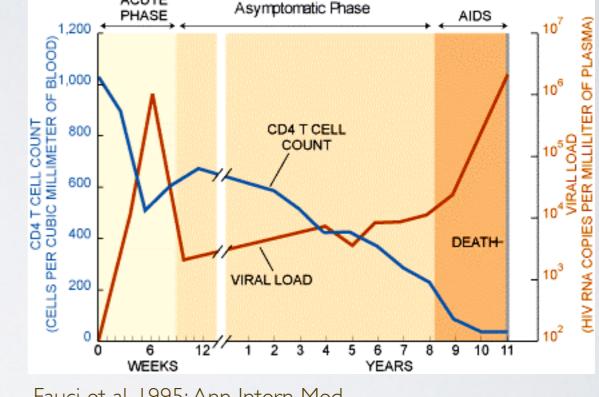
Check: $\sigma \to \infty$, $R_0 = \beta/(\mu + \gamma)$ as for SIR model

LECTURE SUMMARY ...

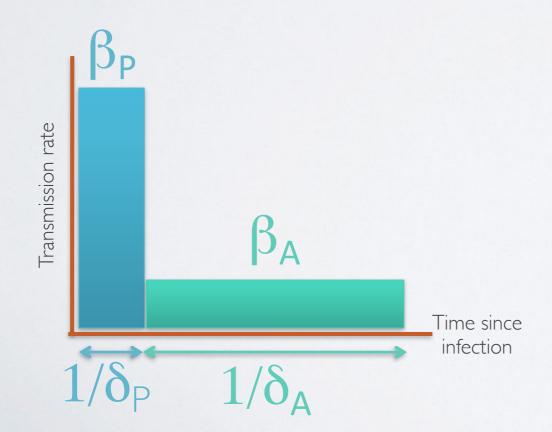
- Linear Stability Analysis
- SIR/SEIR endemic eqm stable if $R_0 > 1$
- Approach to eqm via damped oscillations
 - (Period given by $2\pi \sqrt{(AG)}$)
- Adding latent period, SEIR model
- Affects speed of epidemic take-off
- Next Generation Method to derive expression for R₀ for any model

CLASS CHALLENGE: HIV PROGRESSION

Model needs to consider infectivity of different stages and respective durations



Fauci et al. 1995; Ann Intern Med



$\frac{dS}{dt} = -(\beta_P I_P + \beta_A I_A)S$

$$\frac{dI_P}{dt} = (\beta_P I_P + \beta_A I_A) S - \delta_P I_P$$

$$\frac{dI_A}{dt} = \delta_P I_P - \delta_A I_A$$

Equations:

Show:

$$R_0 = \frac{\beta_P}{\delta_P} + \frac{\beta_A}{\delta_A}$$

HINT: YOU'LL NEED TO KNOW

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}^{-1} = \frac{1}{a_{11}a_{22} - a_{12}a_{21}} \begin{pmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{pmatrix}$$

SOLUTION

$$F = \begin{pmatrix} \beta_{P} & \beta_{A} \\ 0 & 0 \end{pmatrix} \qquad V = \begin{pmatrix} \delta_{P} & 0 \\ -\delta_{P} & \delta_{A} \end{pmatrix} \qquad V^{-1} = \frac{1}{\delta_{P}} \begin{pmatrix} \delta_{A} & \delta_{P} \\ 0 & \delta_{P} \end{pmatrix}$$

$$FV^{-1} = \begin{pmatrix} \beta_{P} & \beta_{A} \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{\delta_{P}} & 0 \\ \frac{1}{\delta_{A}} & \frac{1}{\delta_{A}} \end{pmatrix}$$

$$|FV^{-1}| = \begin{pmatrix} \frac{\beta_P}{\delta_P} + \frac{\beta_A}{\delta_A} - \Lambda & \frac{\beta_A}{\delta_A} \\ 0 & -\Lambda \end{pmatrix} = 0$$

$$R_0 = \frac{\beta_P}{\delta_P} + \frac{\beta_A}{\delta_A}$$