LECTURE 2

Equilibrium Stability Analysis \&
Next Generation Method

MODEL OUTPUT

LONG-TERM DYNAMICS

- So far, looked at start and end of a simple epidemic
- In other settings, would like to know systems dynamics in the long run
- Use equilibrium analysis

STDs AND SIS MODEL

Simple model for a non-immunising infection, that is only cleared through treatment

$$
\begin{aligned}
& \frac{d X}{d t}=\gamma Y-\beta X \frac{Y}{N} \\
& \frac{d Y}{d t}=\beta X \frac{Y}{N}-\gamma Y
\end{aligned}
$$

System reduced to a single state variable

What is R_{0} here? $R_{0}=\frac{\beta}{\gamma}$

Recall that $N=X+Y$, so we can rewrite this system as

$$
\frac{d Y}{d t}=\beta(N-Y) \frac{Y}{N}-\gamma Y
$$

$$
\frac{d Y}{d t}=\beta Y\left(1-\frac{Y}{N}\right)-\gamma Y
$$

EQUILIBRIUM ANALYSIS

- Can study properties of model at equilibrium (setting rates of change $=0$)
- Setting $d Y / d t=0$, we get

$$
\begin{array}{r}
\beta(N-Y) Y / N-\gamma Y=0 \\
\text { So } Y(\beta(N-Y) / N-\gamma)=0
\end{array}
$$

- Satisfied whenever $Y=0$ or $Y=N-N \gamma / \beta=N\left(I-I / R_{0}\right)$
- Eqm points are: 0 and $\mathrm{N}\left(\mathrm{I}-\mathrm{I} / \mathrm{R}_{0}\right)$

STABILITY ANALYSIS

- So, we have two equilibria - one where pathogen persists and one where it is absent
- What are conditions that determine when we observe one or other?
- For answer to this question, we need to carry out linear stability analysis
- Basic idea is to start at an equilibrium point and introduce a slight change (a 'perturbation') and establish whether this perturbation grows (unstable) or decays (stable)

EQUILIBRIUM STABILITY

B

Neutrally Stable

C

To determine stability properties of equilibria, we need to calculate dominant 'eigenvalue'

LINEAR STABILITY ANALYSIS: I-D CASE

- Assume we have a single state variable

$$
\frac{d Y}{d t}=f(Y)
$$

- So, at equilibrium point $Y^{*}, f\left(Y^{*}\right)=0$
- Now, we're interested in knowing what happens if we slightly 'perturb' equilibrium
- Let $Y=Y^{*}+y\left(y \ll Y^{*}\right)$, substitute in ODE

$$
\frac{d(Y+y)}{d t}=\frac{d y}{d t}=f\left(Y^{*}+y\right)
$$

LINEAR STABILITY ANALYSIS: I-D CASE

- $f\left(Y^{*}+y\right)$ can be expressed as a Taylor expansion

$$
\frac{d y}{d t}=f\left(Y^{*}\right)+y f^{\prime}\left(Y^{*}\right)+y^{2} f^{\prime \prime}\left(Y^{*}\right)+\ldots
$$

- Note: f ' means derivative of f with respect to Y

TAYLOR EXPANSION

LINEAR STABILITY ANALYSIS: I-D CASE

- $\mathrm{f}\left(\mathrm{Y}^{*}+\mathrm{y}\right)$ can be expressed as a Taylor expansion

$$
\frac{d y}{d t}=f\left(Y^{*}\right)+y f^{\prime}\left(Y^{*}\right)+\hat{y}^{2} f^{\prime \prime}\left(Y^{*}\right)+\ldots
$$

- Note: f means derivative of f with respect to Y
- We end up with a linear ODE, solution to which is

$$
y(t)=y(0) e^{f^{\prime}\left(Y^{*}\right) t}
$$

- $f^{\prime}\left(Y^{*}\right)$ is 'eigenvalue' -- from now on, we'll call it Λ
- Our perturbation, $y(\mathrm{t})$, will
I. Grow exponentially if $\Lambda>0$ (equilibrium Unstable)

2. Decay exponentially if $\Lambda<0$ (equilibrium Stable)

SIS MODEL

$$
\frac{d Y}{d t}=\beta Y\left(1-\frac{Y}{N} \frac{)}{j}-\gamma Y\right.
$$

- System is in equilibrium as long as

$$
\begin{aligned}
& >Y^{*}=0\left(\text { or } X^{*}=N\right) \ldots \text { ie DFE } \\
& >\text { or } Y^{*}=N(I-\gamma / \beta)=N\left(I-I / R_{0}\right)
\end{aligned}
$$

$$
\begin{aligned}
f(Y) & =\beta Y\left(1-\frac{Y}{N}\right)-\gamma Y \\
f^{\prime}(Y) & =\frac{d f(Y)}{d Y}=\beta-2 \beta \frac{Y}{N}-\gamma
\end{aligned}
$$

SIS MODEL

$$
f^{\prime}(Y)=\beta-2 \beta \frac{Y}{N}-\gamma
$$

* So, when $Y^{*}=0$,

$$
\begin{aligned}
& f^{\prime}(0)=\beta-\gamma \\
& \Rightarrow<0 \text { if } \gamma>\beta \text { or } \mathrm{R}_{0}<1
\end{aligned}
$$

* When $Y^{*}=N(1-\gamma / \beta)$,

$$
\begin{aligned}
& f^{\prime}\left(Y^{*}\right)=-\beta+\gamma \\
& \Rightarrow<0 \text { if } \beta>\gamma \text { or } R_{0}>1
\end{aligned}
$$

STABILITY ANALYSIS

- Let's do this in general terms
- For a system containing n state variables, we have

$$
\frac{d N_{i}}{d t}=f_{i}\left(N_{1}, N_{2}, \ldots, N_{n}\right) \quad i=1, \ldots n
$$

- Now, we perturb equilibrium ($\left.N_{i}=N_{i}{ }^{*}+x_{i}, x_{i} \ll N_{i}{ }^{*}\right)$, Taylor expand $f_{i}()$ and ignore higher order terms ($\mathrm{x}_{\mathrm{i}}{ }^{2}, \mathrm{x}_{\mathrm{i}} \mathrm{x}_{\mathrm{j}}$ etc)
- Growth of perturbations ($\mathrm{x}_{\mathrm{i}}, \mathrm{i}=\mathrm{I}, \ldots, \mathrm{n}$) given by linear set of ODEs

SIR MODEL WITH DEMOGRAPHY

- Move on to thinking about recurrent epidemics, facilitated by replenishment of susceptible pool via naïve births

$$
\begin{aligned}
& \frac{d S}{d t}=\mu-\beta S I-\mu S \\
& \frac{d I}{d t}=\beta S I-(\gamma+\mu) I \\
& \frac{d R}{d t}=\gamma I-\mu R
\end{aligned}
$$

Transmission Recovery

$$
S+1+\mathrm{R}=1 \quad R_{0}=\frac{\beta}{(\mu+\gamma)}
$$

- μ is both per capita host birth and death rate
- Population size assumed constant
- Host life expectancy given by $1 / \mu$

EQUILIBRIUM ANALYSIS - SIR

- Get $S^{*}=I / R_{0}$ and $I^{*}=\mu / \beta\left(R_{0}-I\right)$ (check)
- So, at endemic equilibrium, we have

$$
\left(S^{*}, I^{*}, R^{*}\right)=\left(\frac{1}{R_{0}}, \frac{\mu}{\beta}\left(R_{0}-1\right), 1-\frac{1}{R_{0}}-\frac{\mu}{\beta}\left(R_{0}-1\right)\right)
$$

This equilibrium is only (biologically) feasible as long as $R_{0}>1$

Note: we also have $\left(S^{*}, I^{*}, R^{*}\right)=(1,0,0)$
This is called disease-free equilibrium (DFE) stable only if $R_{0}<1$

ADDING A LATENT PERIOD: SEIR MODEL

- Incorporating a latent period takes into account transition from infected but not yet infectious to infectious

$$
\begin{aligned}
& \frac{d S}{d t}=\mu-\beta S I-\mu S \\
& \frac{d E}{d t}=\beta S I-(\sigma+\mu) E \\
& \frac{d I}{d t}=\sigma E-(\gamma+\mu) I \\
& \frac{d R}{d t}=\gamma I-\mu R
\end{aligned}
$$

Note: $S+E+I+R=1$

SEIR MODEL

- In qualitative ways, this addition makes little difference
- System still possesses two equilibria: DFE $(1,0,0)$ and an endemic equilibrium

$$
\left(S^{*}, E^{*}, I^{*}\right)=\left(\frac{1}{R_{0}}, \frac{\mu(\mu+\gamma)}{\beta \sigma}\left(R_{0}-1\right), \frac{\mu}{\beta}\left(R_{0}-1\right)\right)
$$

- Expression for R_{0} is now

$$
R_{0}=\frac{\beta \sigma}{(\mu+\gamma)(\mu+\sigma)}
$$

INVASION PHASE: SIR

- Consider dl/dt for SIR model, evaluated at disease free equilibrium

$$
\begin{aligned}
\frac{d I}{d t} & =\beta S I-(\mu+\gamma) I \\
& =\beta I-(\mu+\gamma) I
\end{aligned}
$$

- Can solve this wrt t

$$
\begin{aligned}
& I_{S I R} \approx I(0) \times e^{\beta-(\mu+\gamma) t} \\
& I_{S I R} \approx I(0) \times e^{\gamma\left(R_{0}-1\right) t}
\end{aligned}
$$

INVASION PHASE: SEIR

- If we do exactly same thing for SEIR model (straightforward but more involved), we get

$$
I_{S E I R} \approx I(0) \cdot e^{\frac{1}{2}\left(-(\sigma+\gamma)+\sqrt{4\left(R_{0}-1\right) \gamma \sigma+(\gamma+\sigma)^{2}}\right)}
$$

-This seems pretty unwieldy. Let's see what happens if we assume $\gamma=\sigma$

$$
I_{S E I R} \approx I(0) \times e^{\left(\sqrt{R_{0}}-1\right) \gamma t}
$$

-So, in comparison with SIR model, invasion speed in SEIR model scales with $\sqrt{ } \mathrm{R}_{0}$

THE INVASION PHASE: SEIR

DERIVING EXPRESSION FOR

 R_{0}1. Examine eigenvalues at disease-free equilibrium

- Show system has two eigenvalues, $\Lambda=-\mu$ and $\Lambda=(\gamma+\mu)$ $(\beta /(\gamma+\mu)-I)$
- As long as $\beta /\left(\gamma^{+} \mu\right)>1$, disease-free equilibrium is unstable and pathogen successfully invades

2. Use "next generation method" or "Spectral Radius method" (see Diekmann et al. I 990; J. Math. Biol. and Heffernan et al. 2005; J. R. Soc. Interface)

NEXT GENERATION METHOD

- Useful when host population can be split into disjoint categories (representing epidemiological complexities)
- Establishes \# of transmissions generated by typical infected in susceptible population
- Denote $x=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ represent n infected host compartments
- Denote $y=\left\{y_{1}, y_{2}, \ldots, y_{m}\right\}$ represent m other host compartments

NEXT GENERATION METHOD

$$
\begin{aligned}
\frac{d x_{i}}{d t} & =\mathcal{F}_{i}(x, y)-\mathcal{V}_{i}(x, y) & \mathrm{i}=1, \ldots, \mathrm{n} \\
\frac{d y_{j}}{d t} & =\mathcal{G}_{j}(x, y) & \mathrm{j}=1, \ldots, \mathrm{~m}
\end{aligned}
$$

- $\mathcal{F}_{\mathrm{i}}=$ rate at which new infecteds enter compartment i
- $\mathcal{V}_{i}=$ transfer of individuals out of minus into ith compartment

ASSUMPTIONS

I. $\quad \mathcal{F}_{i}(0, y)=\mathcal{V}_{i}(0, y)=0 \forall y>0$
(no new infections if no infecteds)
II. $\quad \mathcal{F}_{i}(x, y) \geq 0 \forall x_{i} \geq 0$ and $y_{i} \geq 0$
(no new infections if no infecteds)
III. $\quad V_{i}(0, y) \leq 0 \forall y_{i} \geq 0$
(if compartment empty, can only have inflow)
IV. $\sum_{i} \mathcal{V}_{i}(x, y) \geq 0 \forall x_{i} \geq 0$ and $y_{i} \geq 0$ (sum is net outflow)
V. System $y^{\prime}=\mathcal{G}(0, y)$ has unique asymptotically stable equilibrium, y^{*}

SIR MODEL

Here, $\mathrm{n}=\mathrm{I}, \mathrm{m}=2, \mathrm{x}=\mathrm{I}, \mathrm{y}=(\mathrm{S}, \mathrm{R})$

$$
\begin{aligned}
& \frac{d S}{d t}=\mu-\beta S I-\mu S \\
& \frac{d I}{d t}=\beta S I-\gamma I-\mu I \\
& \frac{d R}{d t}=\gamma I-\mu R
\end{aligned}
$$

$$
\mathcal{F}_{1}=\beta S I
$$

$$
\mathcal{V}_{1}=(\mu+\gamma) I
$$

$$
\mathcal{G}_{1}=\mu-\beta S I-\mu S
$$

$$
\mathcal{G}_{2}=\gamma I-\mu R
$$

LINEARIZATION

General system

$$
\begin{array}{rlr}
\frac{d x_{i}}{d t} & =\mathcal{F}_{i}(x, y)-\mathcal{V}_{i}(x, y) & \mathrm{i}=1, \ldots, \mathrm{n} \\
\frac{d y_{j}}{d t} & =\mathcal{G}_{j}(x, y) & \mathrm{j}=1, \ldots, \mathrm{~m}
\end{array}
$$

can decouple x-system from y-system when close to disease-free equilibrium, $y^{*} \quad \frac{d}{d t}=(F-V) x$
where F and V are $\mathrm{n} \times \mathrm{n}$ matrices:

$$
F_{i j}=\frac{\partial \mathcal{F}_{i}}{\partial x_{j}}\left(0, y^{*}\right) \quad V_{i j}=\frac{\partial \mathcal{V}_{i}}{\partial x_{j}}\left(0, y^{*}\right)
$$

NEXT GENERATION METHOD

$$
\frac{d x}{d t}=(F-V) x
$$

If $\mathrm{F}=0$ (no new infections), $\mathrm{x}=\times(0) \mathrm{e}^{-\mathrm{Vt}}$.
Expected number of secondary cases produced by an initial case is

$$
\int_{0}^{\infty} F e^{-V t} x(0) d t=F\left(\int_{0}^{\infty} e^{-V t} d t\right) x(0)=F V^{-1} x(0)
$$

Next Generation Matrix, $\mathrm{K}=\mathrm{FV}^{-1}$.
Entry K_{ij} represents expected number of secondary cases in compartment i by an individual in compartment j

NEXT GENERATION METHOD

- Next generation operator (FV^{-1}) gives rate at which individuals in compartment j generate new infections in compartment i times average length of time individual spends in single visit to compartment j
- R_{0} is given by dominant eigenvalue (or 'spectral radius', ρ) of FV^{-1}, ie $\mathrm{R}_{0}=\rho\left(\mathrm{FV}^{-1}\right)=\rho(\mathrm{K})$

SIR MODEL

$$
\begin{aligned}
& \frac{d S}{d t}=\mu-\beta S I-\mu S \\
& \frac{d I}{d t}=\beta S I-\gamma I-\mu I \\
& \frac{d R}{d t}=\gamma I-\mu R
\end{aligned}
$$

$$
\text { Here, } n=I, m=2, x=1, y=(S, R)
$$

$$
\begin{aligned}
& \mathcal{F}_{1}=\beta S I \\
& \mathcal{V}_{1}=(\mu+\gamma) I \\
& \mathcal{G}_{1}=\mu-\beta S I-\mu S \\
& \mathcal{G}_{2}=\gamma I-\mu R
\end{aligned}
$$

$$
F=\frac{\partial \mathcal{F}_{1}}{\partial I}=\beta \quad V=\frac{\partial \mathcal{V}_{1}}{\partial I}=\mu+\gamma
$$

Hence, $R_{0}=\frac{\beta}{(\mu+\gamma)}$

NEXT GENERATION METHOD

- SEIR equations (again):

$$
\begin{aligned}
& \frac{d S}{d t}=\mu-(\beta I+\mu) S \\
& \frac{d E}{d t}=\beta I S-(\mu+\sigma) E \\
& \frac{d I}{d t}=\sigma E-(\mu+\gamma) I
\end{aligned}
$$

$$
n=2
$$

- We deal with these two 'infected' compartments

How do we use Next Generation Method to work out R_{0} for this model?

NEXT GENERATION METHOD

- Write down matrix F, which defines rate of new infections in different compartments, differentiated with respect to E and I and evaluated at disease-free equilibrium

$$
\begin{array}{cc}
F_{1}=\beta S I & \frac{d S}{d t}=\mu-(\beta I+\mu) S \\
F_{2}=0 & \frac{d E}{d t}=\beta I S-(\mu+\sigma) E \\
F=\left(\begin{array}{cc}
\frac{\partial(\beta S I)}{\partial E} & \frac{\partial(\beta S I)}{\partial I} \\
0 & 0
\end{array}\right) & \frac{d I}{d t}=\sigma E-(\mu+\gamma) I \\
F=\left(\begin{array}{cc}
0 & \beta S^{*} \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & \beta \\
0 & 0
\end{array}\right) &
\end{array}
$$

NEXT GENERATION METHOD

- Now, we write a new matrix V that defines rate of transfer of infectives from one compartment to another

$$
\begin{aligned}
& V_{1}=(\mu+\sigma) E \\
& V_{2}=(\mu+\gamma) I-\sigma E
\end{aligned}
$$

$$
\frac{d S}{d t}=\mu-(\beta I+\mu) S
$$

$$
\frac{d E}{d t}=\beta I S-(\mu+\sigma) E
$$

$$
V=\left(\begin{array}{cc}
\mu+\sigma & 0 \\
-\sigma & \mu+\gamma
\end{array}\right) \frac{d I}{d t}=\sigma E-(\mu+\gamma) I
$$

NEXT GENERATION METHOD

- Recall that inverse of

$$
\left(\begin{array}{ll}
a & b \\
c & d^{\frac{}{\dot{j}}}
\end{array} \text { is }^{\text {i }} \frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)^{\frac{i}{\dot{i}}}\right.
$$

So, we get:
$F V^{-1}=\left(\begin{array}{cc}0 & \beta \\ 0 & 0\end{array}\right)\left(\begin{array}{cc}\frac{\mu+\gamma}{(\mu+\gamma)(\mu+\sigma)} & 0 \\ \frac{\sigma}{(\mu+\gamma)(\mu+\sigma)} & \frac{\mu+\sigma}{(\mu+\gamma)(\mu+\sigma)}\end{array}\right)$

NEXT GENERATION METHOD

$$
F V^{-1}=\left(\begin{array}{cc}
\frac{\beta \sigma}{(\mu+\gamma)(\mu+\sigma)} & \frac{\beta(\mu+\sigma)}{(\mu+\gamma)(\mu+\sigma)} \\
0 & 0
\end{array}\right)
$$

This is Next Generation Operator. Ro given by largest eigenvalue of this matrix:

$$
\begin{aligned}
&\left|F V^{-1}\right|=\left|\begin{array}{cc}
\frac{\beta \sigma}{(\mu+\gamma)(\mu+\sigma)}-\Lambda & \frac{\beta(\mu+\sigma)}{(\mu+\gamma)(\mu+\sigma)} \\
0 & 0-\Lambda
\end{array}\right| \\
& R_{0}=\frac{\beta \sigma}{(\mu+\gamma)(\mu+\sigma)}
\end{aligned}
$$

Check: $\sigma \rightarrow \infty, R_{0}=\beta /(\mu+\gamma)$ as for SIR model

ANOTHER EXAMPLE

For some infectious diseases (eg avian influenza viruses), transmission thought to occur via two distinct pathways.

1. Susceptible hosts (birds) may become infected as a result of direct contact with an infectious individual
2. OR, birds may also become infected via contact with (ie drinking) contaminated water at rate βv. Each infectious individual sheds virus into environment at a rate ω, and virus in environmental reservoir (denoted by V) decays at a rate ρ

FLOW DIAGRAM

NEXT GENERATION MATRIX

- Matrix F, defines new infections in different compartments

$$
\left.\left.\begin{array}{rl}
F_{1}=\beta S I+\beta_{V} S V ; \quad F_{2}=0 \\
F & =\left(\begin{array}{cc}
\beta & \beta_{V} \\
0 & 0
\end{array}\right) \\
V_{1} & =(\mu+\gamma) I ; \quad V_{2}=\rho V-\omega I \\
V & \frac{d S}{d t}=\mu(1-S)-\left(\beta I+\beta_{V} V\right) S \\
& \frac{d I}{d t}=\left(\beta I+\beta_{V} V\right) S-(\mu+\gamma) I \\
(\mu+\gamma) & 0 \\
-\omega & \rho
\end{array}\right) \quad \frac{d V}{d t}=\omega I-\rho V\right)
$$

NEXT GENERATION MATRIX

- Next Generation Operator given by

$$
F V^{-1}=\left(\begin{array}{cc}
\frac{\beta}{(\mu+\gamma)}+\frac{\beta_{V} \omega}{\rho(\mu+\gamma)} & \frac{\beta_{V}}{\rho} \\
0 & 0
\end{array}\right)
$$

- Work out spectral radius $\left(\operatorname{det}\left(\mathrm{FV}^{-1}-\lambda I\right)=0\right)$:

$$
R_{0}=\frac{\beta}{(\mu+\gamma)}+\frac{\beta_{V} \omega}{\rho(\mu+\gamma)}
$$

LECTURE SUMMARY

- Linear Stability Analysis
- SIR/SEIR endemic eqm stable if $R_{0}>$ ।
- Adding latent period, SEIR model
- Affects speed of epidemic take-off
- Next Generation Method to derive expression for R_{0} for any model

CLASS CHALLENGE: HIV PROGRESSION

Model needs to consider

 infectivity of different stages and respective durations

Fauci et al. 1995; Ann Intern Med

Equations:

$$
\begin{array}{ll}
\frac{d S}{d t}=-\left(\beta_{P} I_{P}+\beta_{A} I_{A}\right) S & \\
\frac{d I_{P}}{d t}=\left(\beta_{P} I_{P}+\beta_{A} I_{A}\right) S-\delta_{P} I_{P} & \text { Show: } \\
\frac{d I_{A}}{d t}=\delta_{P} I_{P}-\delta_{A} I_{A} & R_{0}=\frac{\beta_{P}}{\delta_{P}}+\frac{\beta_{A}}{\delta_{A}}
\end{array}
$$

HINT:YOU'LL NEED TO KNOW

$$
\begin{aligned}
& \left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|=a_{11} a_{22}-a_{12} a_{21} \\
& \left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)^{-1}=\frac{1}{a_{11} a_{22}-a_{12} a_{21}}\left(\begin{array}{cc}
a_{22} & -a_{12} \\
-a_{21} & a_{11}
\end{array}\right)
\end{aligned}
$$

SOLUTION

$$
\begin{array}{ll}
F=\left(\begin{array}{cc}
\beta_{P} & \beta_{A} \\
0 & 0
\end{array}\right) \quad V=\left(\begin{array}{cc}
\delta_{P} & 0 \\
-\delta_{P} & \delta_{A}
\end{array}\right) & V^{-1}=\frac{1}{\delta_{P} \delta_{A}}\left(\begin{array}{cc}
\delta_{A} & 0 \\
\delta_{P} & \delta_{P}
\end{array}\right) \\
F V^{-1}=\left(\begin{array}{cc}
\beta_{P} & \beta_{A} \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
\frac{1}{\delta_{P}} & 0 \\
\frac{1}{\delta_{A}} & \frac{1}{\delta_{A}}
\end{array}\right) \\
\left|F V^{-1}\right|=\left(\begin{array}{cc}
\frac{\beta_{P}}{\delta_{P}}+\frac{\beta_{A}}{\delta_{A}}-\Lambda & \frac{\beta_{A}}{\delta_{A}} \\
0 & -\Lambda
\end{array}\right)=0 & R_{0}=\frac{\beta_{P}}{\delta_{P}}+\frac{\beta_{A}}{\delta_{A}}
\end{array}
$$

