Infectious Disease Management

Insights from simple models

The Anatomy of an Epidemic

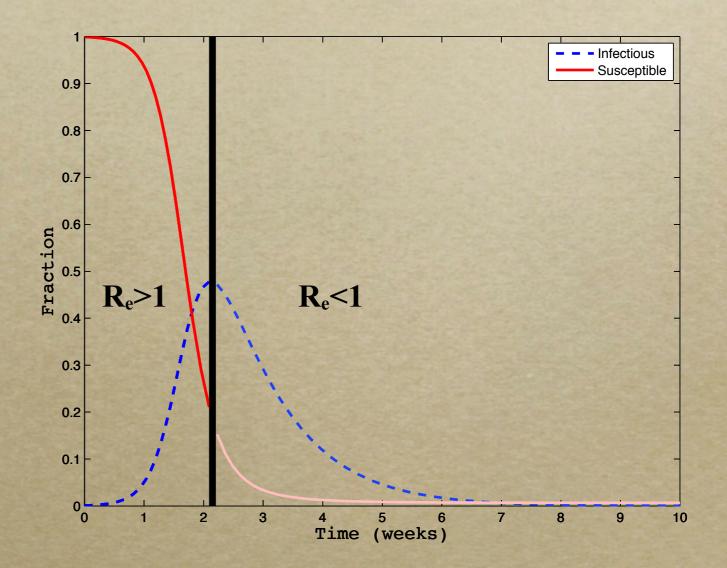
Initially, exponential growth (proportional to R_0)

But, depletes susceptibles, so R₀ no longer useful

Instead, define effective value of R_0 (call it R_e)

 R_e scales with proportion of susceptibles in population (s=X/N), ie $R_e = R_0$ s

when R_e<1, each infectious individual infects fewer than one new person, breaking transmission chain



Vaccination

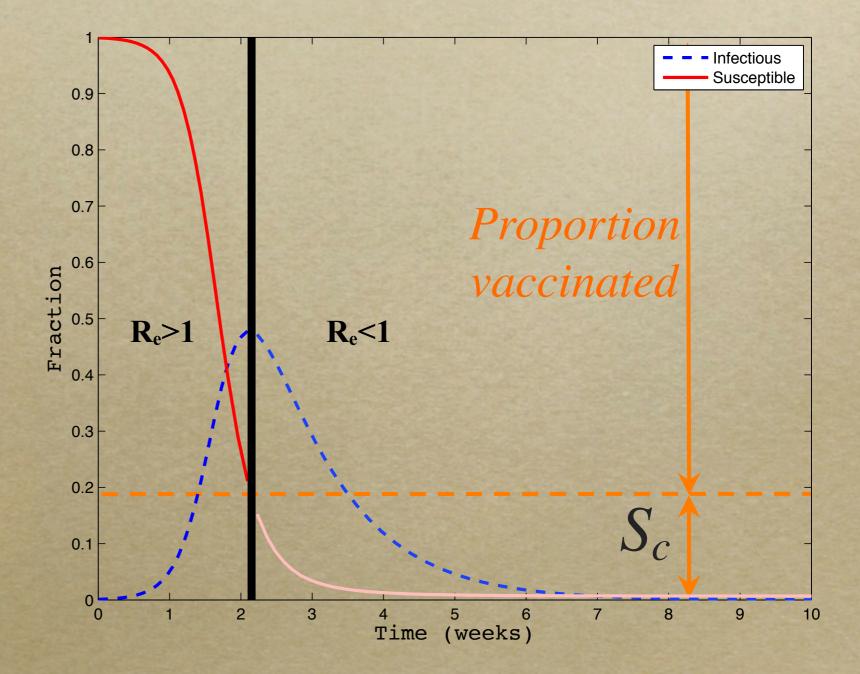
If, by vaccination, we can reduce proportion of susceptibles below a <u>critical</u> <u>level, S_c</u>, then R_e<1 and infection can never 'invade'

Recall: $R_{e_e} = R_0 X/N$

So, $S_c=1/R_0$ represents $R_{e_e}=1$ and will achieve our goal

So, critical vaccination proportion to eradicate is

 $p_c = 1 - S_c = 1 - 1/R_0$



Mathematically ...

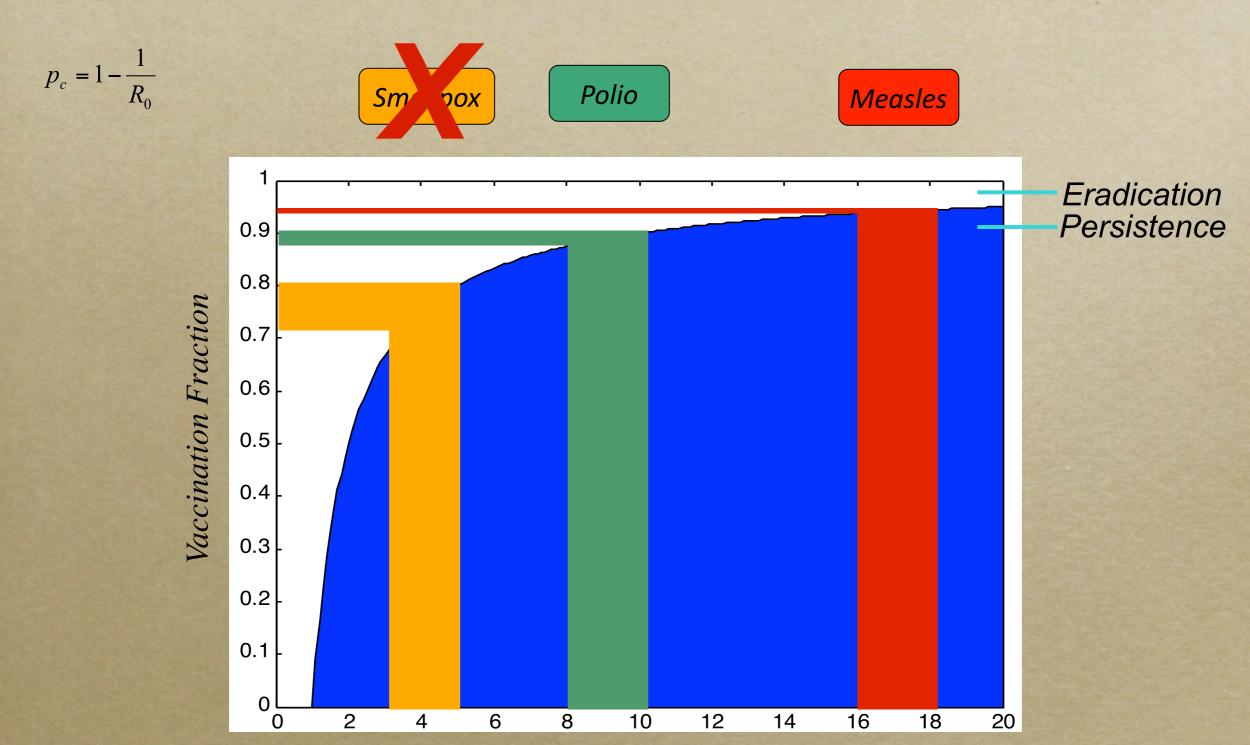
• Consider rate of change of invectives:

$$\frac{dY}{dt} = \beta X \frac{Y}{N} - \gamma Y$$

Hence, preventing initial spread (dY/dt <0) requires</p>

$$\beta \frac{X}{N} < \gamma$$
$$\implies \frac{X}{N} < \frac{\gamma}{\beta} = \frac{1}{R_0}$$

Eradication Criterion



Basic Reproduction Ratio, R₀

Herd immunity:

protection of an individual from infection via others in population gaining immunity

If neighbors have been vaccinated, probability of acquiring disease is lower

Don't need to vaccinate everyone to eradicate an infectious disease

Extent of vaccination effort determined by simple quantity, R₀

1. "Paediatric immunization"

- Familiar with infant immunization
- Generally treated as fraction, p, of newborns vaccinated

vaccinated (p)

Infectious

Recovered

Susceptible

births _____

it birth 🍪	HepB
2 months	HepB (1-2 mos) + DTaP + PCV13 + Hib + Polio + RV
4 months	DTaP + PCV13 + Hib + Polio + RV
6 months	HepB (6-18 mos) + DTaP + PCV13 + Hib + Polio (6-18 mos) + RV
실 12 Months	MMR (12-15 mos) + PCV13 (12-15 mos) + Hib (12-15 mos) + Varicella (12-15 mos) + HepA (12-23 mos)
15 months	DTaP (15-18 mos)

1. "Paediatric immunization"

• Model this (as one time event)

$$\frac{dS}{dt} = \mu(1-p) - \beta SI - \mu S$$
$$\frac{dI}{dt} = \beta SI - (\mu + \gamma)I$$
$$\frac{dR}{dt} = \mu p + \gamma I - \mu R$$

- Now what?
- Let's derive expression for I*

"Paediatric immunization"

• After some algebra:

• $I^* = \mu/\beta (R_0(1-p) - 1)$

- Eradication implies I*=0
- Requires $p = 1 1/R_0$

$$\frac{dS}{dt} = \mu(1-p) - \beta SI - \mu S$$
$$\frac{dI}{dt} = \beta SI - (\mu + \gamma)I$$
$$\frac{dR}{dt} = \mu p + \gamma I - \mu R$$

• This is **fraction** of newborns to be immunized for (eventual) control

2. Random Immunization

anine Distemper Virus

- Consider wildlife diseases
- How would you vaccinate newborns?
- Pragmatically, will need continuous vaccination instead

"Random immunization"

• After some algebra:

 $\bullet I^* = \mu/\beta \left(R_0 - 1 - \rho/\mu \right)$

- Again, eradication $\rightarrow I^*=0$
- Requires $\rho \ge \mu(R_0-1)$
- This is **rate** of susceptibles to be immunized for (*eventual*) control
- What does criterion tell us, biologically?

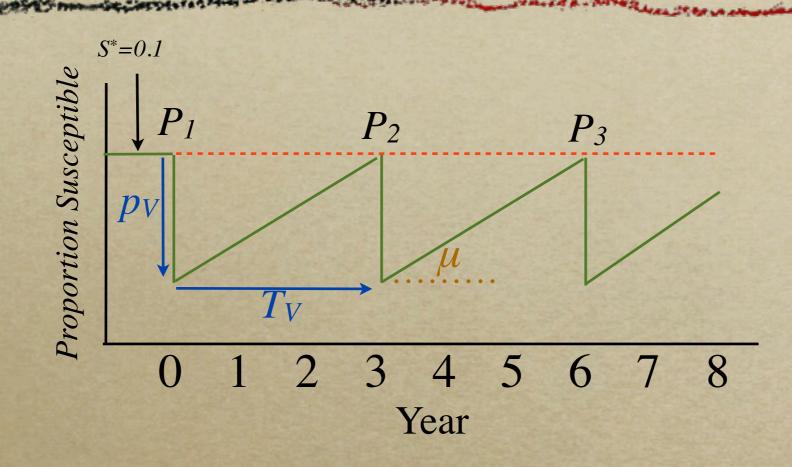
 $\frac{dS}{dt} = \mu - \beta SI - \mu S - \rho S$ $\frac{dI}{dt} = \beta SI - (\mu + \gamma)I$ $\frac{dR}{dt} = \rho S + \gamma I - \mu R$

3. "Pulsed" Vaccination

- Infant & Continuous vaccinations require sound infrastructure for vaccine delivery
 - may be challenging in many developing nations

 Alternative, perhaps more economic and logistically efficient strategy may be pulsed vaccination: immunize specific age cohorts at specified intervals

Pulsed Vaccination



 $-Assume R_0 = 10$

 $-p_V = 60\%$ and per capita annual birth rate = 2%

- For dI/dt < 0, need to ensure S < 1/10
- After any pulse, S = 1/10 * 0.4 = 0.04
- Since μ =0.02, it'll take 3 years for S to reach 0.1
- So, pulse period = 3 yrs

More formally ...

Vaccination fraction

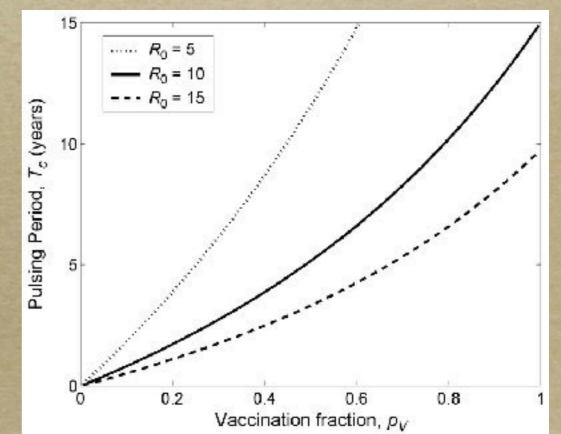
• For an SIR model:

$$\frac{dS}{dt} = \mu - \beta SI - \mu S - p_V \sum_{n=0}^{\infty} S(nT^{-})\delta(t - nT)$$
$$\frac{dI}{dt} = \beta SI - (\mu + \gamma)I$$

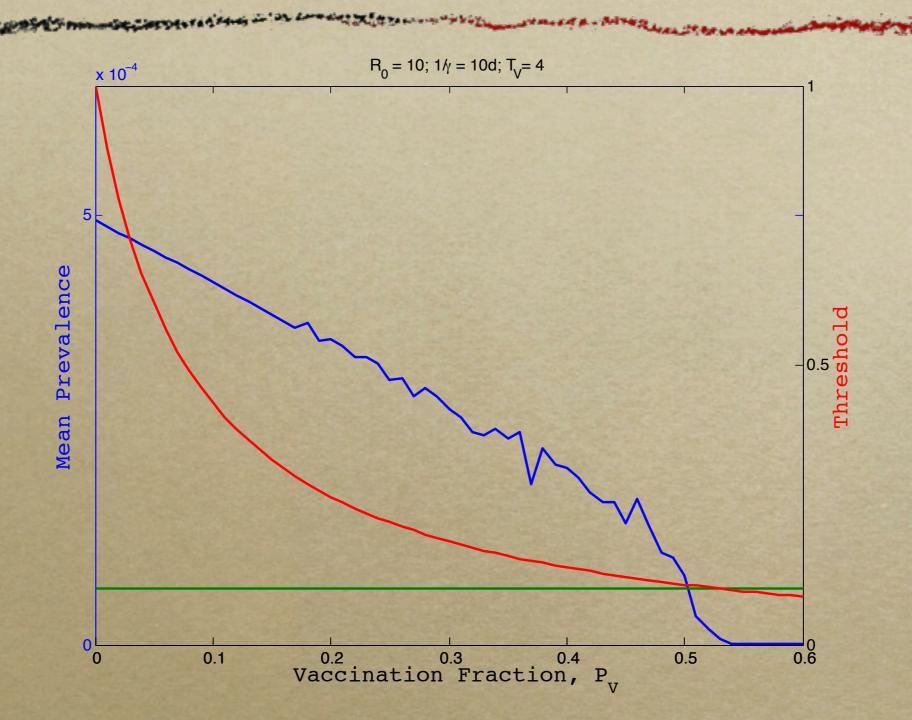
Susceptibles Dirac delta prior to PV function

• Shulgin et al. (1998; Bull Math Biol): Linear stability analysis reveals eradication criterion

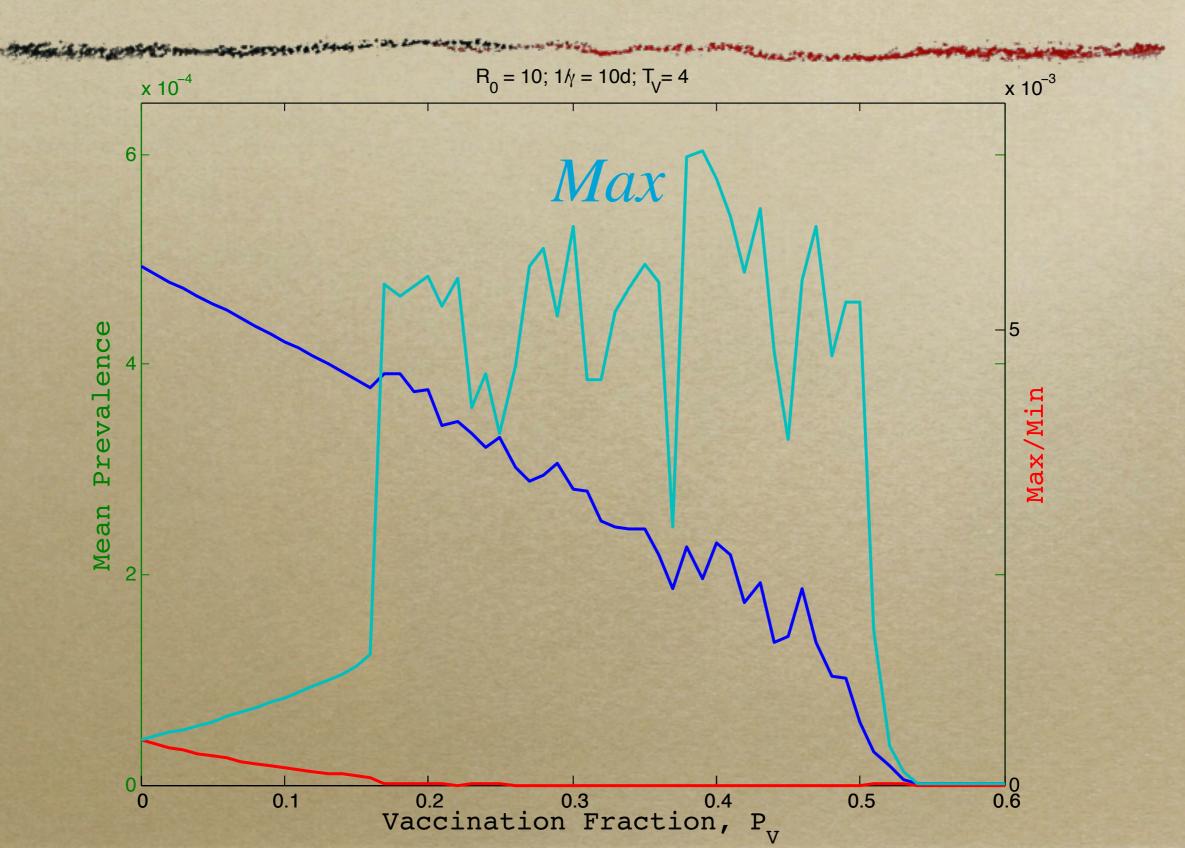
$$\frac{(\mu T - p_V)(e^{\mu T} - 1) + \mu p_V T}{\mu T(p_V - 1 + e^{\mu T})} < \frac{1}{R_0}$$



Programming:

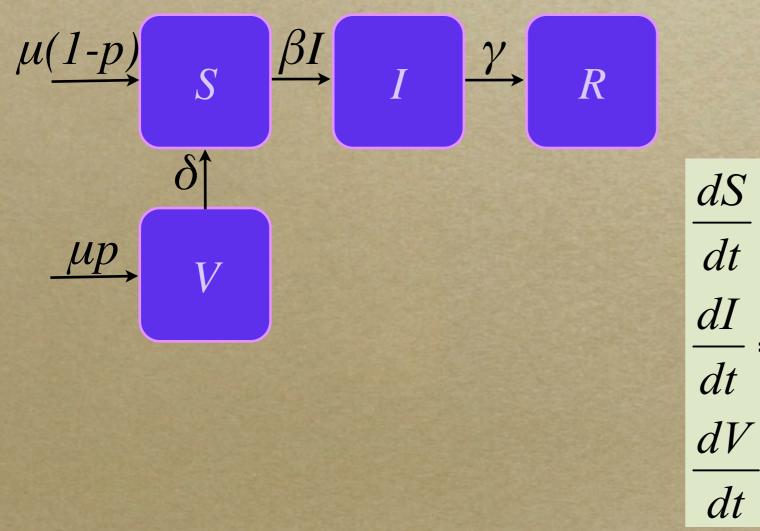


Programming Challenge:



Aside: Imperfect Vaccines

• What if -as is at times the case- immunity derived from a vaccine wanes over time?



$$\frac{dS}{dt} = \mu(1-p) - \beta SI - \mu S + \delta V$$
$$\frac{dI}{dt} = \beta SI - (\mu + \gamma)I$$
$$\frac{dV}{dt} = \mu p - (\mu + \delta)V$$

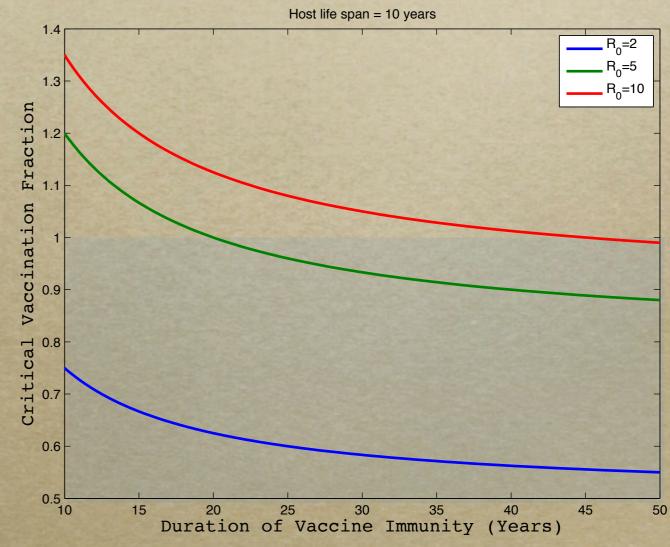
Aside: Imperfect Vaccines

• What if -as is at times the case- immunity derived from a vaccine wanes over time?

$$\frac{dS}{dt} = \mu (1 - p) - \beta SI - \mu S + \delta V$$
$$\frac{dI}{dt} = \beta SI - (\mu + \gamma)I$$
$$\frac{dV}{dt} = \mu p - (\mu + \delta)V$$

Eradication requires (Check this)

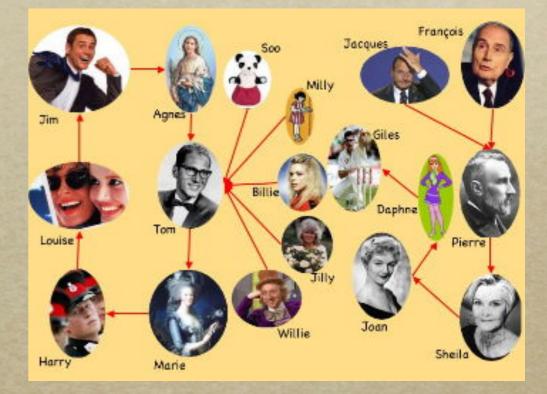
$$p = \left(1 - \frac{1}{R_0}\right) \left(1 + \frac{\delta}{\mu}\right)$$

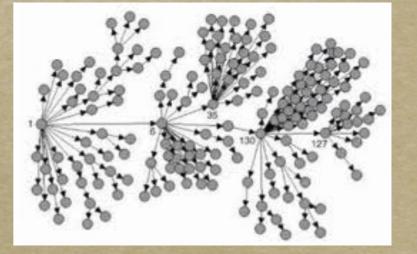


Eradication will require boosters

4. Non-Pharmaceutical Interventions

- "Social distancing"
- Isolation and quarantining
- We should also find (or trace) their contacts





Background

MALLAR. MAY

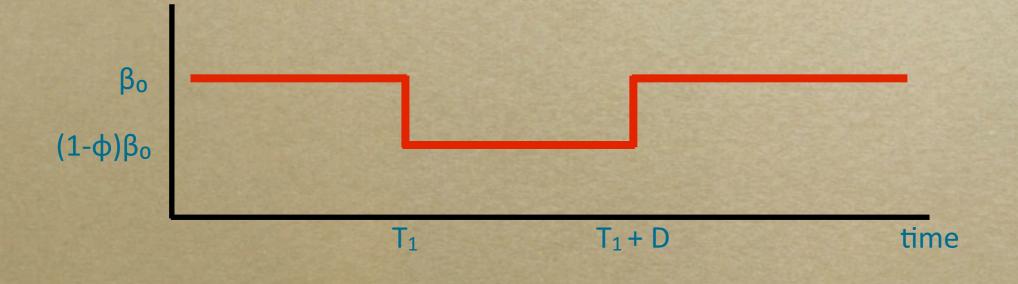
Pandemic planning

Consider emerging pathogen Everyone susceptible No pharmaceutical defense (drugs/vaccines) Only Non-Pharmaceutical Interventions would work

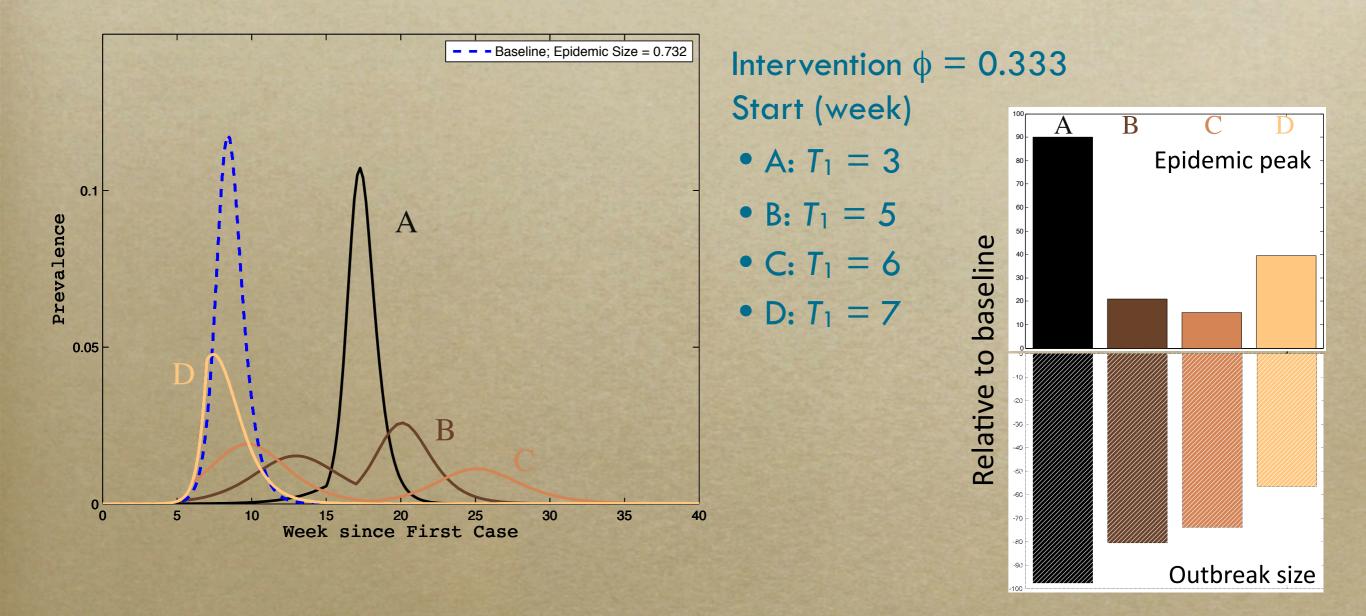
Social distancing How long? What extent?

Protocol

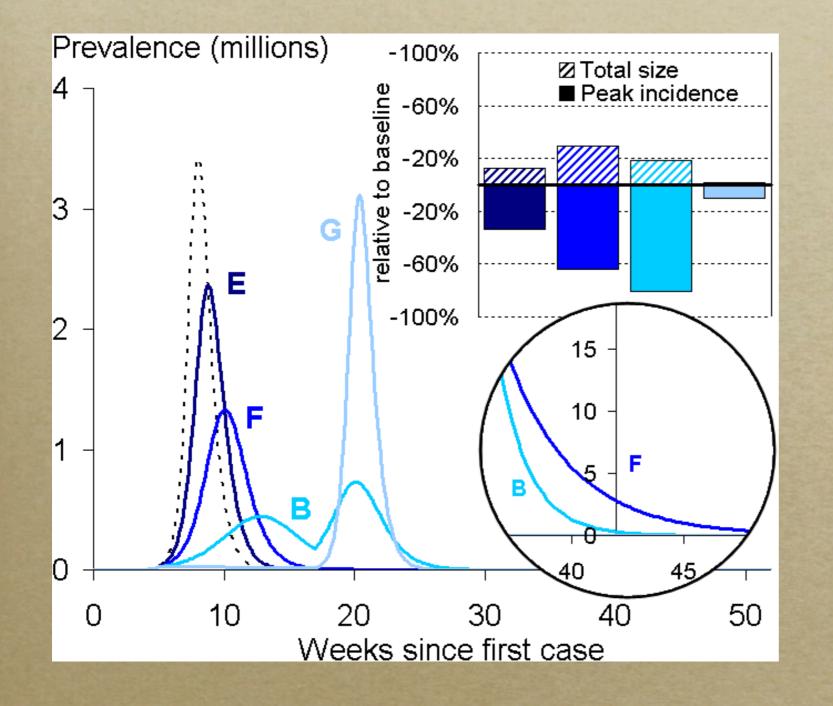
Basic reproduction ratio R₀ = 1.8
Recovery rate γ = 1/2.6 day⁻¹
Generation time 2.6 days
Baseline transmission rate β₀ = R₀ γ
Population size n = 58.1 million (UK)



Intervention D=12 weeks

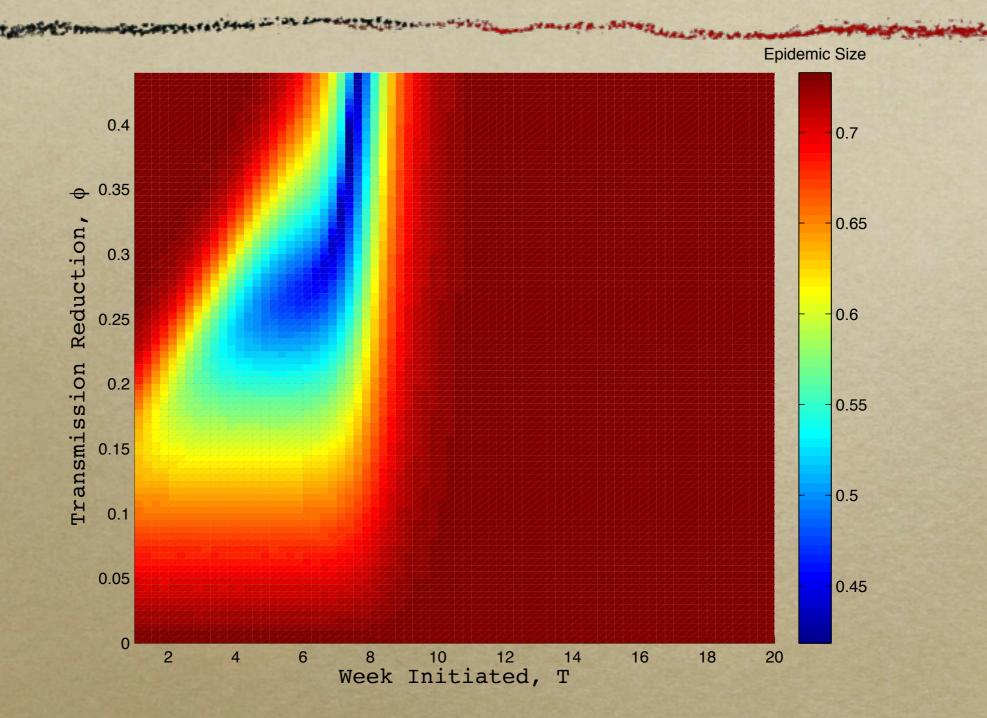


Intervention D=12 weeks



- Start (week) $T_1 = 5$
- Intervention
- E: $\phi = 0.111$
- F: $\phi = 0.222$
- B: $\phi = 0.333$
- G: $\phi = 0.444$

Intervention D=12 weeks



Depending on aims of control, efforts that are too early or too severe may be counter-productive

Lecture Summary ...

- Models can generate predictions about immunization levels required for eradication
- Similarly, extent of non-pharmaceutical interventions can be gauged
- NPIs leave many susceptibles behind
 - Important for re-introductions
- Infections with much silent transmission very difficult to control with NPIs