Model-Data Interface

Parameter estimation and statistical inference

Parameter estimation

- We've seen that basic reproductive ratio, R₀, is a very important quantity
- How do we calculate it?
- In general, we might not know (many) model parameters. How do we achieve parameter estimation from epidemiological data?
- Review some simple methods

1a. Final outbreak size

• From lecture 1, we recall that at end of epidemic:

•
$$S(\infty) = 1 - R(\infty) = S(0) e^{-R(\infty) R_0}$$

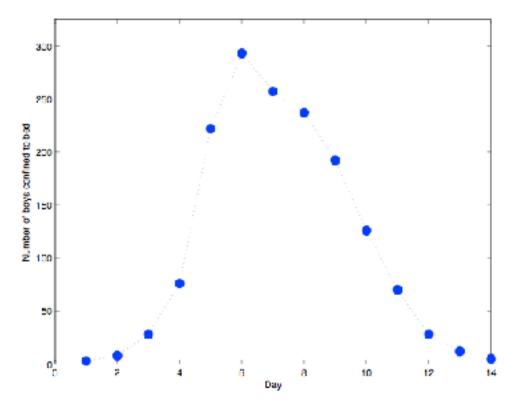
So, if we know population size (N), initial susceptibles (to get S(0)), and total number infected (to get R(∞)), we can calculate R₀

$$R_0 = -\frac{\log(1 - R(\infty))}{R(\infty)}$$

Note: Ma & Earn (2006) showed this formula is valid even when numerous assumptions underlying simple SIR are relaxed

1. Final outbreak size

• Worked example:



Influenza epidemic in a British boarding school in 1978

N = 764 X(0) = 763 Z(∞) ~ 512

R₀~1.65

1b. Final outbreak size

Becker showed that with more information, we can also estimate R₀ from

$$R_{0} = \frac{(N-1)}{C} \ln \left\{ \frac{X_{0} + \frac{1}{2}}{X_{f} - \frac{1}{2}} \right\} \quad (\sim 1.66)$$

- Again, we need to know population size (N), initial susceptibles (X₀), total number infected (C)
- Usefully, standard error for this formula has also been derived

$$SE(R_0) = \frac{(N-1)}{C} \sqrt{\sum_{j=X_f+1}^{X_0} \frac{1}{j^2} + \frac{CR_0^2}{(N-1)^2}}$$

Small aside: mean age at infection

- An epidemiologically interesting quantity is mean age at infection – how do we calculate it in simple models?
- From first principles, it's mean time spent in susceptible class
- At equilibrium, this is given by $1/(\beta I^*)$, which leads to

$$A = \left(\frac{1}{\mu(R_0 - 1)}\right)$$

This can be written as $R_0-1 \approx L/A$ (L= life expectancy)

Historically, this equation's been an important link between epidemiological estimates of A and deriving estimates of R₀

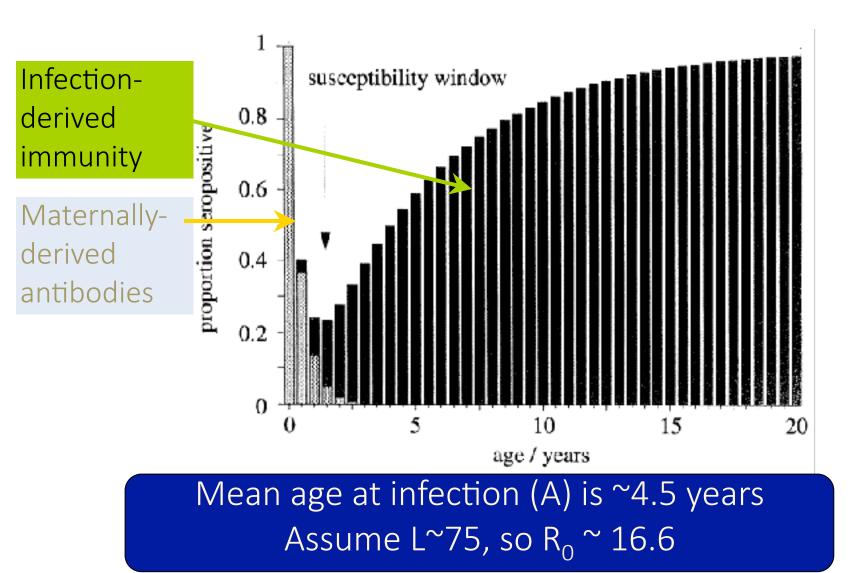
2. Independent data

- For *S(E)IR* model, we can calculate average length of time it takes for an individual to acquire infection (assuming born susceptible)
- Expression for *Mean Age at Infection* is

$$A \approx \frac{1}{\mu R_0} \implies A \approx \frac{L}{R_0} \implies R_0 \approx \frac{L}{A}$$

R₀ is mean life expectancy (L) divided by mean age at infection (A)

Measles Age-Stratified Seroprevalence



Historical significance

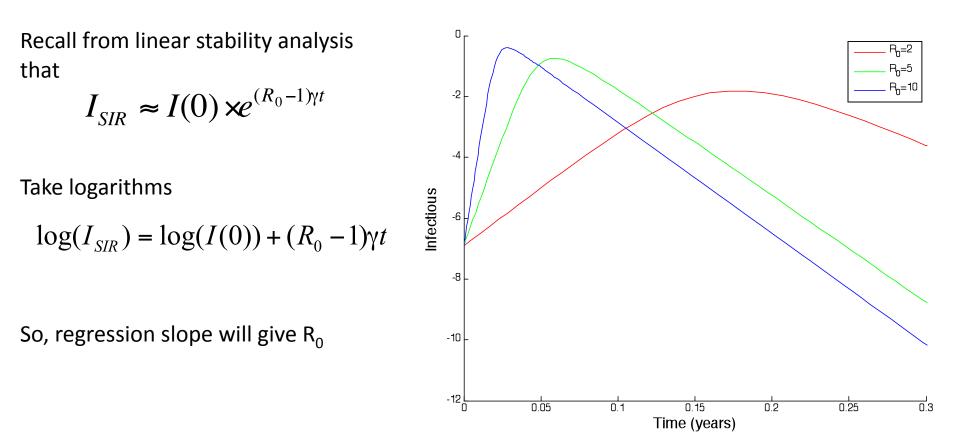
Anderson & May (1982; Science)

Table 2. The intrinsic reproductive rate, R_0 , and average age of acquisition, A; for various infections [condensed from (25); see also (36)]. Abbreviations: r. rural; u, conurbation.

Disease	Average age at infection, A (years)	Geographical location	Type of community	Time period	Assumed life expectancy (years)	R ₀
Meašles	4.4 to 5.6	England and Wales	r and u	1944 to 1979	70	13.7 to 18.0
	5.3	Various localities in North America	r and u	1912 to 1928	60	12.5
Whooping	4.1 to 4.9	England and Wales	rand u	1944 to 1978	70	14.3 to 17.1
cough	4.9	Maryiand	u	1908 to 1917	60	12.2
Chicken pox	6.7	Maryland	'u	1913 to 1917	60	9.0
	7.1	Massachusetts	randu	1918 to 1921	60	8.5
Diphtheria	9.1	Pennsylvariia	u	1910 to 1916	60	5.5
	11.0	Virginia and New York	randu	1934 to 1947	70	5.4
Scarlet	$\begin{array}{c} 8.0 \\ 10.8 \end{array}$	Maryland	u	1908 to 1917	60	7.5
fever		Kansas	r	1918 to 1921	60	5.5
Mumps	9.9	Baltimore, Maryland	u	.1943	70	7.1
	13.9	Various localities in North America	r and u	1912 to 1916	60	4.3
Rubella	10.5	West Germany	r and u	1972	70	6.7
	11.6	England and Wales	r and u	1979	70	6.0
Paliomyelitis	11.2	Netherlands	r and u	1960	70	6.2
	11.9	United States	r and u	1955	70	5.9

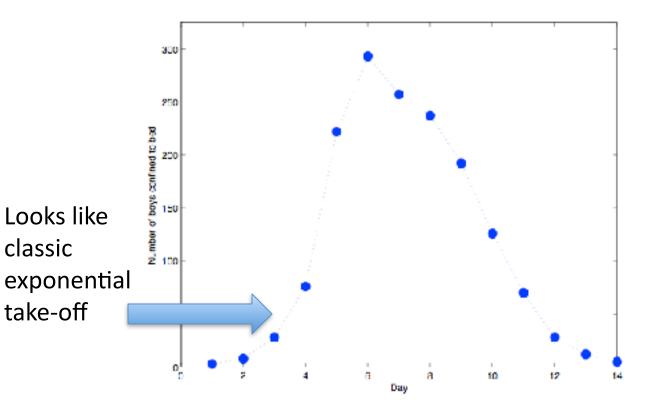
3. Epidemic Take-off

A slightly more common approach is to study the epidemic take off

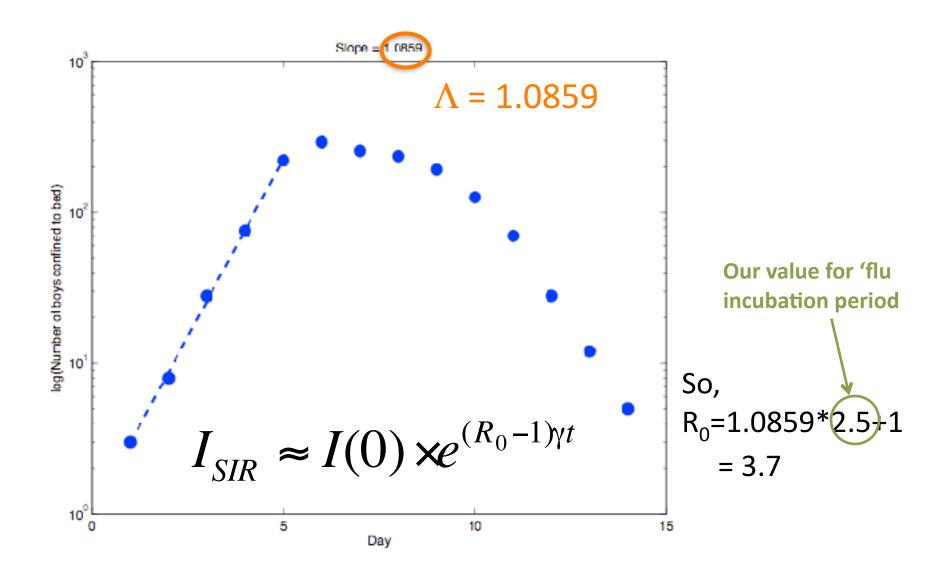


3. Epidemic take-off

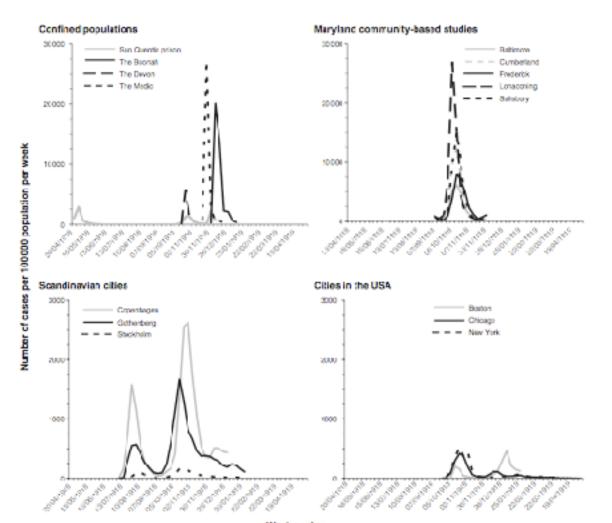
• Back to school boys



Epidemic take-off

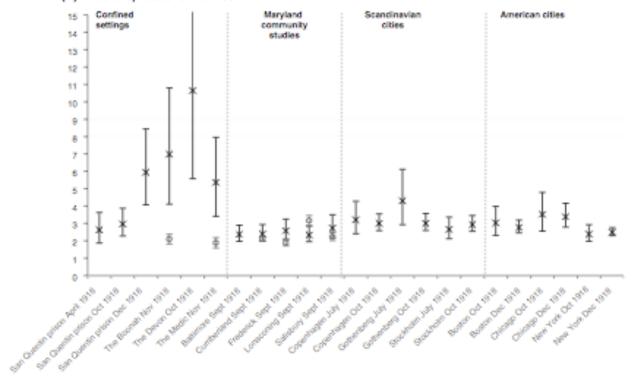


Vynnycky et al. (2007)



Weekending

Vynnycky et al. (2007)



(B) Basic reproduction number

Variants on this theme

• Recall

 $\log(I_{SIR}) = \log(I(0)) + (R_0 - 1)\gamma t$

- Let T_d be 'doubling time' of outbreak
- Then,

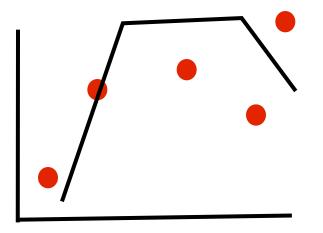
* $R_0 = log(2) / T_d \gamma + 1$

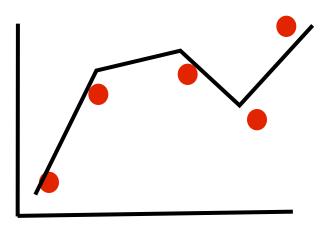
4. Likelihood & inference

- We focus on random process that (putatively) generated data
- A model is explicit, mathematical description of this random process
- "The likelihood" is probability that data were produced given model and its parameters:
 L(model | data) = Pr(data | model)
- Likelihood quantifies (in some sense optimally) model goodness of fit

- Assume we have data, D, and model output, M (both are vectors containing state variables). Model predictions generated using set of parameters, θ
- Transmission dynamics subject to
 - <u>"process noise"</u>: heterogeneity among individuals, random differences in timing of discrete events (environmental and demographic stochasticity)
 - <u>"observation noise</u>": random errors made in measurement process itself

- If we ignore process noise, then model is deterministic and all variability attributed to measurement error
- Observation errors assumed to be sequentially independent
- Maximizing likelihood in this context is called 'trajectory matching'





- Data, D
- Model output, M
- Parameters, θ

- If we assume measurement errors are normally distributed, with mean μ and variance σ^2 then

$$L(M(\theta) \mid D) = \prod_{i} \frac{1}{\sqrt{2\pi\sigma^{2}}} e^{\frac{(D_{i} - M_{i})^{2}}{2\sigma^{2}}}$$

- Data, D
- Model output, M
- Parameters, θ

• Often easier to deal with Log-likelihoods:

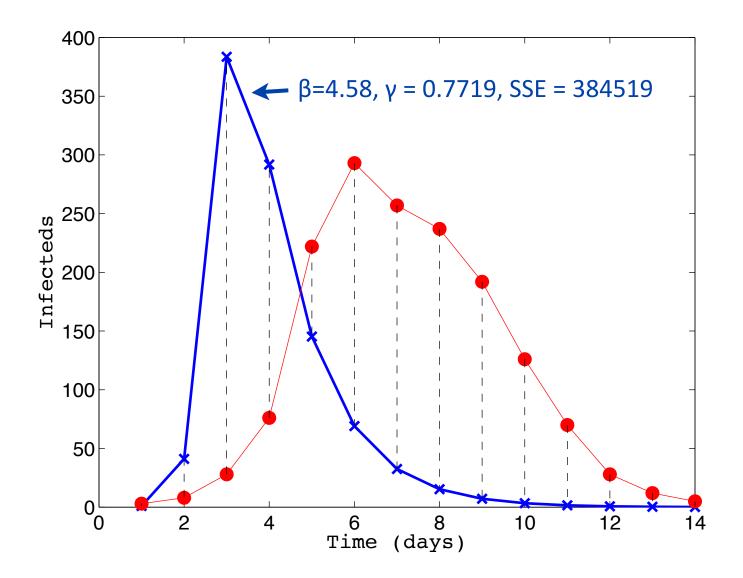
$$\log(L(M(\theta) | D)) = -\frac{n}{2}\log(2\pi\sigma^{2}) - \frac{1}{2\sigma^{2}}\sum_{i}(D_{i} - M_{i})^{2}$$

- Under such conditions, Maximum Likelihood
 Estimate, MLE, is simply parameter set with smallest deviation from data
- Equivalent to using least square errors, to decide on goodness of fit

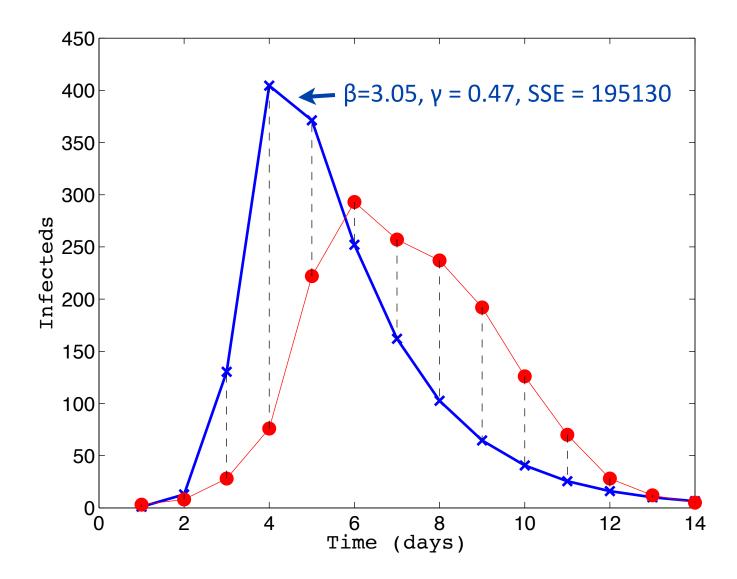
- Least Squares Statistic = SSE = $\Sigma (D_i - M_i)^2$

• Then, miminise SSE to arrive at MLE

Trajectory matching



Trajectory matching



Model estimation: Influenza outbreak x 10⁵ 14 x 10⁵ (<u>16</u> (<u>3</u> <u>14</u> (<u>16</u>) 16 12 10 300 Squared Errors 12 225 10 Cases 8 150 6 75 of 0 2 3 5 10 11 12 13 14 2 6 7 8 9 Sum **Day of Outbreak** 0 0.5 1.5 Transmission rate (f Recovery rate (γ) 14 13.5 •Systematically vary β and γ , 15 13 14 calculate SSE 12.5 13 12 (<u>HSS</u>) 501 11.5 Parameter combination with 11 10.5 lowest SSE is 'best fit' 10 10 9

Recovery rate (γ)

0.5

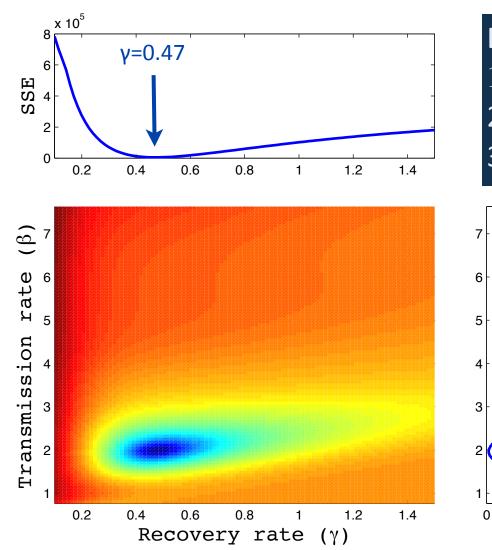
Λ

Transmission rate (β)

9.5

0 1.5

Model estimation: Influenza outbreak



Best fit parameter values: 1. β = 1.96 (per day) 2. $1/\gamma$ = 2.1 days 3. $R_0 \sim 4.15$

β=1.96

x 10⁵

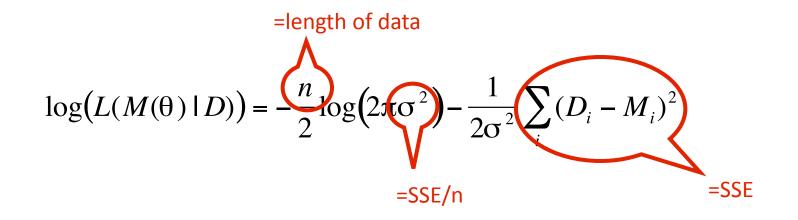
2

SSE

Generally, may have more parameters to fit, so grid search not efficient

Nonlinear optimization algorithms (eg Nelder-Mead) would be used

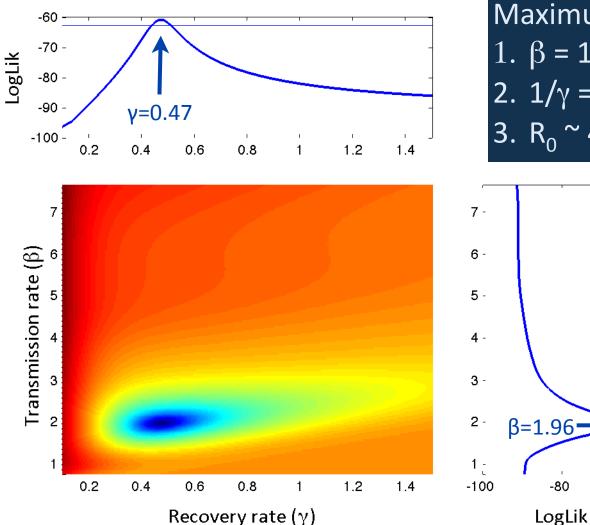
• How do we relate SSE to logLik?



Model estimation: Influenza outbreak

SSE LogLik 14 -65 13.5 -60 15 --70 13 -65 14 12.5 -70 -75 13 12 -75 (12 10 (SSE) 11 -80 11.5 LogLik -80 11 -85 -85 10.5 -90 10 -90 10 -95 9 9.5 -100 -95 6 6 -105 / 8 -0 0.5 2 -100 0.5 1.5 0 0 1.5 Transmission rate (β) Transmission rate (β) Recovery rate (γ) Recovery rate (γ)

Model estimation: Influenza outbreak



Maximum Likelihood Estimates: 1. β = 1.96 (per day) 2. $1/\gamma$ = 2.1 days 3. $R_0 \sim 4.15$

-60

Recall 2 log-likelihood units indicate significant difference

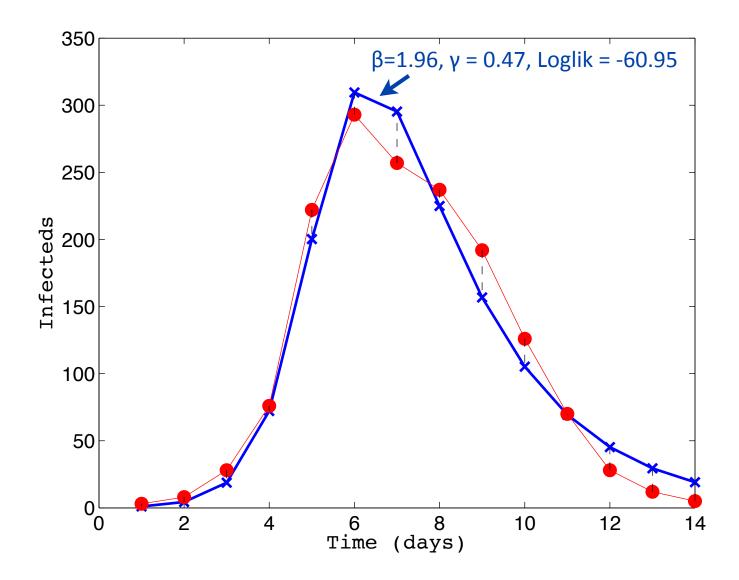
Can use likelihood profiles to put confidence intervals on estimates

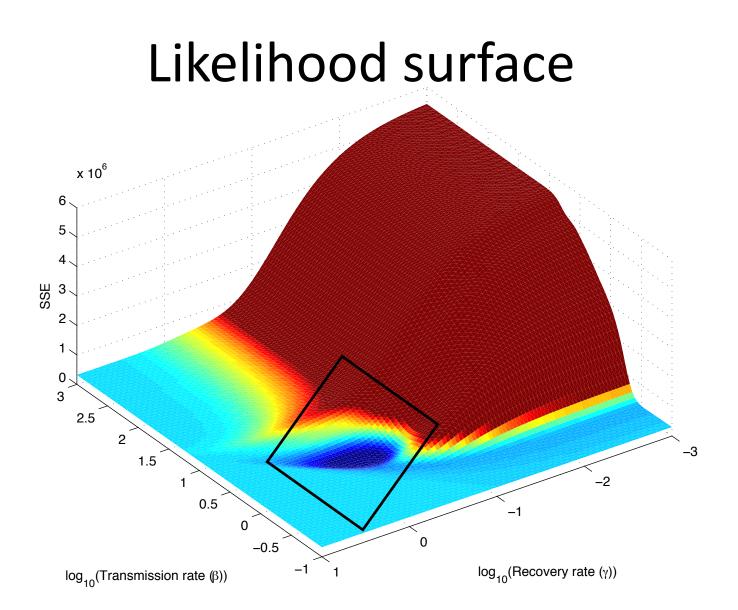
β=1.96 (1.90,2.04) γ=0.47 (0.43,0.50)

Model comparison

- How to compare models with different number of estimated parameters?
- Commonly use Akaike's Information Criterion
- AIC = 2 p 2 logLik, where p is number of estimated parameters for model
- rule-of-thumb: if AIC difference <
 2, models indistinguishable

	SIR	Model 2
β	1.96 (1.90,2.04)	
γ	0.47 (0.43,0.50)	
logLik	-60.95	
AIC	125.9	





When likelihood surface is somewhat complex, success of estimation using gradient-based optimization algorithms (eg Nelder-Mead) will depend on providing a good initial guess

Caveat

- In boarding school example, data represent number of boys sick ~ Y(t)
- Typically, data are 'incidence' (newly detected or reported infections)
- Don't correspond to any model variables
- May need to 'construct' new information:
 - $dC/dt = \gamma Y$ diagnosis at end of infectiousness $- dC/dt = \beta XY/N$
- Set C(t+ Δ t) = 0 where Δ t is sampling interval of data

Lecture Summary ...

- R₀ can be estimated from epidemiological data in a variety of ways
 - Final epidemic size
 - Mean age at infection
 - Outbreak exponential growth rate
 - Curve Fitting
- In principle, variety of unknown parameters may be estimated from data

Further, ...

1. Include uncertainty in initial conditions

- We took I(0) = 1. Instead could estimate I(0) together with β and γ (now have 1 fewer data points)
- 2. Explicit observation model
 - •Implicitly assumed measurement errors normally distributed with fixed variance, but can relax this assumption
- 3. What is appropriate model?
 - •SEIR model? (latent period before becoming infectious)
 - •SEICR model? ("confinement to bed")
 - •Time varying parameters? (e.g. action taken to control spread)

Further, ...

- 4. Assumed model deterministic -- how do we fit a stochastic model?
 - Use a 'particle filter' to calculate likelihood
- 5. Can we simultaneously estimate numerous parameters?
 - More complex models have more parameters... estimate all from 14 data points? ⇒ identifiability

6. More complex models are more flexible, so tend to fit better

 How do we determine if increased fit justifies increased complexity? ⇒ information criteria