Model-Data Interface

Parameter estimation and statistical inference



Parameter estimation

We've seen that basic reproductive ratio, R, is a
very important quantity

How do we calculate it?

In general, we might not know (many) model
parameters. How do we achieve parameter
estimation from epidemiological data?

Review some simple methods



1a. Final outbreak size

 From lecture 1, we recall that at end of
epidemic:
" S(eo) = 1—R(e0) = 5(0) € R(=I R,

e So, if we know population size (N), (to
get S(0)), and (to get R(e=)), we can
calculate R,

~log(1 — R(00))
R(00)

Ry =

Note: Ma & Earn (2006) showed this formula is valid even when
numerous assumptions underlying simple SIR are relaxed
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1. Final outbreak size

 Worked example:

Influenza epidemic in a British
boarding school in 1978

' N = 764
X(0) = 763
Z(o0) ~ 512

R, ™ 1.65




1b. Final outbreak size

 Becker showed that with more information, we
can also estimate R, from

X, + =
R0=(N-1)1n< b
C 1
Xf_EJ

e Again, we need to know population size (N),
(Xo)» (C)

* Usefully, standard error for this formula has also been derived

(N-1)| & 1 CR/
SE(R)) =~ +
( 0) C j=;f+1j2 (N—l)z




Small aside: mean age at infection

* An epidemiologically interesting quantity is mean age at
infection — how do we calculate it in simple models?

* From first principles, it’'s mean time spent in susceptible
class

« At equilibrium, this is given by 1/(p1*), which leads to

A= <M(Rol— 1))

This can be written as R;-1 = L/A (L= life expectancy)

Historically, this equation’s been an important link between
epidemiological estimates of A and deriving estimates of R,



2. Independent data

* For S(E)IR model, we can calculate average length of
time it takes for an individual to acquire infection
(assuming born susceptible)

* Expression for Mean Age at Infection is

Ry is mean life expectancy (L) divided

by mean age at infection (A)
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Mean age at infection (A) is ~4.5 years

Assume L~7/5, so R, ™~ 16.6



Historical significance

Anderson & May (1982; Science)

Tzbie 2. The wtrinsic reproductive rate, R, and average

Abtrev.zlivns; r, rumal; o, conurbation.
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assase infection,
A yEams)
Measles 24t03.6
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cough 4.9
Chicken pox 6.7
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_ 1.0
Scaclet 5.0
fever 10,8
Mumps 9.9
‘ 12.9
Rubella 0.5
(.6
Faliomyalitis .2
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3. Epidemic Take-off

A slightly more common approach is to study the epidemic take off

Recall from linear stability analysis
that

I, = 1(0) %"

Take logarithms

log(Zgy,) = log(1(0)) + (R, - 1)yt

Infectious

So, regression slope will give R,
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3. Epidemic take-off

e Back to school boys

Looks like
classic
exponential

M. mb

take-off |
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Number cf cases per 100000 sopulation per waek

Vynnycky et al. (2007)
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Vynnycky et al. (2007)
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Variants on this theme

e Recall

log(]S]R) = log([(O)) + (Ro - 1)Yt

 Let T, be ‘doubling time’ of outbreak
* Then,



4. Likelihood & inference

We focus on random process that (putatively)
generated data

A model is explicit, mathematical description of this
random process

“The likelihood” is probability that data were
produced given model and its parameters:

L(model | data) = Pr(data | model)

Likelihood quantifies (in some sense optimally) model
goodness of fit



4. Likelihood & estimation

e Assume we have data, D, and
(both are vectors containing state variables). Model
predictions generated using set of parameters, 6

* Transmission dynamics subject to

— “process noise”: heterogeneity among
individuals, random differences in timing of

discrete events (environmental and demographic
stochasticity)

— “observation noise”: random errors made in
measurement process itself




4. Likelihood & estimation

®
* If we ignore process noise, ® \
then model is deterministic °

and all variability attributed to
measurement error

e Observation errors assumed to
be sequentially independent
* Maximizing likelihood in this

context is called ‘trajectory
matching’




4. Likelihood & estimation

e Data, D

e Parameters, 0

* |f we assume measurement errors are normally
distributed, with mean w and variance o2 then

(D, -M;)*
202

1

L(M(e)lD)=Hme




4. Likelihood & estimation

e Data, D

e Parameters, 0

* Often easier to deal with Log-likelihoods:

1
20°

log(L(M(®)1D)) = —glog(Znoz)— (D, - M,y



4. Likelihood & estimation

 Under such conditions, Maximum Likelihood
Estimate, MLE, is simply parameter set with smallest

deviation from data

* Equivalent to using least square errors, to decide on
goodness of fit

— Least Squares Statistic = SSE = X(D, — M.)?

e Then, miminise SSE to arrive at MLE
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Model estimation: Influenza outbreakﬂ

05
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Day of Outbreak

Sum of Squared Errors (SSE)
©
1

o ©

Recovery rate (y)

Systematically vary 3 and v,
calculate SSE

Log (SSE)

Parameter combination with
lowest SSE is ‘best fit’
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Transmission rate (f)

Model estimation: Influenza outbreak

Best fit parameter values:
1. p=1.96 (per day)

2. 1/y=2.1days

0.4 0. 0.8 1 1.2 1.4 )
Recovery rate (Y)

3. R,~4.15

Generally, may have
more parameters to fit,
so grid search not
efficient

Nonlinear optimization
algorithms (eg Nelder-
Mead) would be used

25



4. Likelihood & estimation

* How do we relate SSE to logLik?

=length of data

log(L(M(©)1D)) = @)g(Z

=SSE/n =55E



Log(SSE)

Model estimation: Influenza outbreak
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Model estimation: Influenza outbreak

Maximum Likelihood Estimates:
1. p=1.96 (per day)

2. 1/y=2.1days
3. R,~4.15

14
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Model comparison

How to compare models with

different number of estimated

Commonly use Akaike’s B 1.96(1.90,2.04)
Information Criterion

AIC =2 p - 2 logLik, where p is v 047(043,050)

number of estimated logLik -60.95

parameters for model

rule-of-thumb: if AIC difference < AlC 1259

2, models indistinguishable

29



Likelihood estimation
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Likelihood surface

SSE

log, ,(Transmission rate (3)) -1 log, ,(Recovery rate ()

When likelihood surface is somewhat complex, success of estimation using gradient-based
optimization algorithms (eg Nelder-Mead) will depend on providing a good initial guess



Caveat

In boarding school example, data represent number of
boys sick ~ Y(t)

Typically, data are ‘incidence’ (newly detected or
reported infections)
Don’t correspond to any model variables

May need to ‘construct” new information:

— dC/dt=vyY  diagnosis at end of infectiousness
— dC/dt = fXY/N

Set C(t+At) = 0 where At is sampling interval of data



« R, can be estimated from epidemiological data
in a variety of ways

— Final epidemic size
— Mean age at infection
— QOutbreak exponential growth rate
— Curve Fitting
* |n principle, variety of unknown parameters
may be estimated from data



Further, ...

1.Include uncertainty in initial conditions

e We took I(0) = 1. Instead could estimate 1(0) together with 3
and y (now have 1 fewer data points)

2.Explicit observation model

e Implicitly assumed measurement errors normally distributed
with fixed variance, but can relax this assumption

3.What is appropriate model?

oSEIR model? (latent period before becoming infectious)
e SEICR model? (“confinement to bed”)

eTime varying parameters? (e.g. action taken to control
spread)



Further, ...

4. Assumed model deterministic -- how do we fit a stochastic
model?

e Use a ‘particle filter’ to calculate likelihood

5.Can we simultaneously estimate numerous parameters?

e More complex models have more parameters... estimate
all from 14 data points? = identifiability

6.More complex models are more flexible, so tend to fit better

e How do we determine if increased fit justifies increased
complexity? = information criteria



