
Model-Data Interface
Parameter estimation and statistical inference



Parameter	es)ma)on

• We’ve	seen	that	basic	reproduc)ve	ra)o,	R0,	is	a	
very	important	quan)ty	

• How	do	we	calculate	it?			

• In	general,	we	might	not	know	(many)	model	
parameters.		How	do	we	achieve	parameter	
es)ma)on	from	epidemiological	data?	

• Review	some	simple	methods



1a.	Final	outbreak	size

• From	lecture	1,	we	recall	that	at	end	of	
epidemic:	
§ S(∞)	=	1	–	R(∞)	=	S(0)	e	–R(∞)	R0	

• So,	if	we	know	popula)on	size	(N)	,	ini)al	suscep)bles	(to	
get	S(0)),	and	total	number	infected	(to	get	R(∞)),	we	can	
calculate	R0	

Note:	Ma	&	Earn	(2006)	showed	this	formula	is	valid	even	when	
numerous	assump)ons	underlying	simple	SIR	are	relaxed

R0 = � log(1�R(1))

R(1)



1.	Final	outbreak	size

• Worked	example:

Influenza	epidemic	in	a	Bri)sh	
boarding	school	in	1978	

N	=	764	
X(0)	=	763	
Z(∞)	~	512	

R0	~	1.65



1b.	Final	outbreak	size

• Becker	showed	that	with	more	informa)on,	we	
can	also	es)mate	R0	from		

• Again,	we	need	to	know	popula)on	size	(N)	,	ini)al	
suscep)bles	(X0),	total	number	infected	(C)	

• Usefully,	standard	error	for	this	formula	has	also	been	derived

(~1.66)



Small	aside:	mean	age	at	infec)on

• An	epidemiologically	interes)ng	quan)ty	is	mean	age	at	
infec)on	–	how	do	we	calculate	it	in	simple	models?	

• From	first	principles,	it’s	mean	)me	spent	in	suscep)ble	
class	

• At	equilibrium,	this	is	given	by	1/(βI*),	which	leads	to	

§ This	can	be	wrigen	as	R0-1	≈	L/A		 (L=	life	expectancy)	

§Historically,	this	equa)on’s	been	an	important	link	between	
epidemiological	es)mates	of	A	and	deriving	es)mates	of	R0

A =

✓
1

µ(R0 � 1)

◆



2.	Independent	data

• For	S(E)IR	model,	we	can	calculate	average	length	of	
)me	it	takes	for	an	individual	to	acquire	infec)on	
(assuming	born	suscep)ble)	

• Expression	for	Mean	Age	at	Infec1on	is	 	 	

R0 is mean life expectancy (L) divided 	
by mean age at infec8on (A)



Measles	Age-Stra)fied	Seroprevalence

Infec8on-
derived 
immunity

Maternally-
derived 
an8bodies

Mean age at infec8on (A) is ~4.5 years	
Assume L~75, so R0 ~ 16.6



Historical	significance

Anderson	&	May	(1982;	Science)



3.		Epidemic	Take-off

Recall	from	linear	stability	analysis	
that	

Take	logarithms	

So,	regression	slope	will	give	R0

A	slightly	more	common	approach	is	to	study	the	epidemic	take	off



3.	Epidemic	take-off

• Back	to	school	boys

Looks	like	
classic	
exponen)al	
take-off



Epidemic	take-off

Λ	=	1.0859

So,		
R0=1.0859*2.5+1	
					=	3.7

Our	value	for	‘flu	
incuba1on	period



Vynnycky	et	al.	(2007)



Vynnycky	et	al.	(2007)



Variants	on	this	theme

• Recall	

• Let	Td	be	‘doubling	)me’	of	outbreak	

• Then,		
★ R0	=	log(2)	/Tdγ +1



4.	Likelihood	&	inference

• We	focus	on	random	process	that	(puta)vely)	
generated	data		

• A	model	is	explicit,	mathema)cal	descrip)on	of	this	
random	process		

• “The	likelihood”	is	probability	that	data	were	
produced	given	model	and	its	parameters:	

L(model	|	data)	=	Pr(data	|	model)	

• Likelihood	quan)fies	(in	some	sense	op)mally)	model	
goodness	of	fit

16



4.	Likelihood	&	es)ma)on

• Assume	we	have	data,	D,	and	model	output,	M	
(both	are	vectors	containing	state	variables).		Model	
predic)ons	generated	using	set	of	parameters,	θ	

• Transmission	dynamics	subject	to		
– “process	noise”:	heterogeneity	among	
individuals,	random	differences	in	)ming	of	
discrete	events	(environmental	and	demographic	
stochas)city)	
– “observa)on	noise”:	random	errors	made	in	
measurement	process	itself



4.	Likelihood	&	es)ma)on

• If	we	ignore	process	noise,	
then	model	is	determinis)c	
and	all	variability	agributed	to	
measurement	error	

• Observa)on	errors	assumed	to	
be	sequen)ally	independent			

• Maximizing	likelihood	in	this	
context	is	called	‘trajectory	
matching’



4.	Likelihood	&	es)ma)on

• Data,	D	
• Model	output,	M		
• Parameters,	θ	

• If	we	assume	measurement	errors	are	normally	
distributed,	with	mean	µ	and	variance	σ2	then



4.	Likelihood	&	es)ma)on

• Data,	D	
• Model	output,	M		
• Parameters,	θ	

• Owen	easier	to	deal	with	Log-likelihoods:



4.	Likelihood	&	es)ma)on

• Under	such	condi)ons,	Maximum	Likelihood	
Es)mate,	MLE,	is	simply	parameter	set	with	smallest	
devia)on	from	data	

• Equivalent	to	using	least	square	errors,	to	decide	on	
goodness	of	fit	

– Least	Squares	Sta)s)c	=	SSE	=	Σ(Di	–	Mi)2	

• Then,	miminise	SSE	to	arrive	at	MLE



Trajectory	matching
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Trajectory	matching
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Model	es)ma)on:	Influenza	outbreak
C
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calculate	SSE	

•Parameter	combina)on	with	
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Model	es)ma)on:	Influenza	outbreak

25

Best	fit	parameter	values:	
1. β	=	1.96	(per	day)		
2. 1/γ	=	2.1	days	
3. R0	~	4.15

β=1.96

γ=0.47

Generally,	may	have	
more	parameters	to	fit,	
so	grid	search	not	
efficient	

Nonlinear	op)miza)on	
algorithms	(eg	Nelder-
Mead)	would	be	used



4.	Likelihood	&	es)ma)on

• How	do	we	relate	SSE	to	logLik?

=SSE=SSE/n

=length	of	data



Model	es)ma)on:	Influenza	outbreak
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Model	es)ma)on:	Influenza	outbreak
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Maximum	Likelihood	Es)mates:	
1. β	=	1.96	(per	day)		
2. 1/γ	=	2.1	days	
3. R0	~	4.15

β=1.96

γ=0.47

Recall	2	log-likelihood	
units	indicate	significant	
difference	

Can	use	likelihood	
profiles	to	put	
confidence	intervals	on	
es)mates

β=1.96	(1.90,2.04)	
γ=0.47	(0.43,0.50)



Model	comparison

• How	to	compare	models	with	
different	number	of	es)mated	
parameters?	

• Commonly	use	Akaike’s	
Informa)on	Criterion	

• AIC	=	2	p	-	2	logLik,	where	p	is	
number	of	es)mated	
parameters	for	model	

• rule-of-thumb:	if	AIC	difference	<	
2,	models	indis)nguishable

29

SIR Model	2

β 1.96	(1.90,2.04)

γ 0.47	(0.43,0.50)

logLik -60.95

AIC 125.9



Likelihood	es)ma)on
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β=1.96,	γ	=	0.47,	Loglik	=	-60.95
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Likelihood	surface
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When	likelihood	surface	is	somewhat	complex,	success	of	es)ma)on	using	gradient-based	
op)miza)on	algorithms	(eg	Nelder-Mead)	will	depend	on	providing	a	good	ini)al	guess



Caveat

• In	boarding	school	example,	data	represent	number	of	
boys	sick	~	Y(t)	

• Typically,	data	are	‘incidence’	(newly	detected	or	
reported	infec)ons)	

• Don’t	correspond	to	any	model	variables	
• May	need	to	‘construct’	new	informa)on:	
– dC/dt	=	γY	 	 diagnosis	at	end	of	infec)ousness	
– dC/dt	=	βXY/N	

• Set	C(t+Δt)	=	0	where	Δt	is	sampling	interval	of	data



Lecture	Summary	…

• R0	can	be	es)mated	from	epidemiological	data	
in	a	variety	of	ways	
– Final	epidemic	size	
–Mean	age	at	infec)on	
– Outbreak	exponen)al	growth	rate	
– Curve	Fi�ng	

• In	principle,	variety	of	unknown	parameters	
may	be	es)mated	from	data



Further,	...

1.Include	uncertainty	in	ini)al	condi)ons	
•	We	took	I(0)	=	1.	Instead	could	es)mate	I(0)	together	with	β	
and	γ	(now	have	1	fewer	data	points)	

2.Explicit	observa)on	model	
•Implicitly	assumed	measurement	errors	normally	distributed	
with	fixed	variance,	but	can	relax	this	assump)on	

3.What	is	appropriate	model?			
•SEIR	model?	(latent	period	before	becoming	infec)ous)	
•SEICR	model?	(“confinement	to	bed”)	
•Time	varying	parameters?	(e.g.	ac)on	taken	to	control	
spread)	

34



Further,	...

4.	Assumed	model	determinis)c	--	how	do	we	fit	a	stochas)c	
model?		
•Use	a	‘par)cle	filter’	to	calculate	likelihood	

5.Can	we	simultaneously	es)mate	numerous	parameters?	
•More	complex	models	have	more	parameters…		es)mate	
all	from	14	data	points?	⇒	iden)fiability		

6.More	complex	models	are	more	flexible,	so	tend	to	fit	beger	
•How	do	we	determine	if	increased	fit	jus)fies	increased	
complexity?	⇒	informa)on	criteria

35


