Andrew W. Park & John M. Drake
library(GGally); library(magrittr); data(cars)
cars %>% ggpairs(columns=c("speed","dist"))
library(dplyr); cars %<>% mutate(log10speed=log10(speed))
cars %>% ggpairs(columns=c("log10speed","dist"))
x <- tibble(rnorm(10)) %>% print
# A tibble: 10 × 1
`rnorm(10)`
<dbl>
1 1.23836789
2 -0.64992326
3 -0.37155651
4 1.28118928
5 -1.93241589
6 -0.14352980
7 -0.05756151
8 -0.80958714
9 0.86830968
10 -0.28274651
x %>% sample_n(5)
# A tibble: 5 × 1
`rnorm(10)`
<dbl>
1 1.28118928
2 -0.05756151
3 1.23836789
4 -1.93241589
5 -0.64992326
x %>% sample_n(5)
# A tibble: 5 × 1
`rnorm(10)`
<dbl>
1 -0.8095871
2 -0.1435298
3 1.2811893
4 -0.6499233
5 -1.9324159
set.seed(123); x %>% sample_n(5) #1st call
# A tibble: 5 × 1
`rnorm(10)`
<dbl>
1 -0.37155651
2 -0.80958714
3 1.28118928
4 -0.05756151
5 -0.14352980
set.seed(123); x %>% sample_n(5) #2nd call
# A tibble: 5 × 1
`rnorm(10)`
<dbl>
1 -0.37155651
2 -0.80958714
3 1.28118928
4 -0.05756151
5 -0.14352980
library(ggplot2)
ggplot(cars)+geom_point(aes(speed,dist))+
geom_smooth(aes(speed,dist),method="lm")
summary(lm(speed~dist,data=cars))
Call:
lm(formula = speed ~ dist, data = cars)
Residuals:
Min 1Q Median 3Q Max
-7.5293 -2.1550 0.3615 2.4377 6.4179
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 8.28391 0.87438 9.474 1.44e-12 ***
dist 0.16557 0.01749 9.464 1.49e-12 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.156 on 48 degrees of freedom
Multiple R-squared: 0.6511, Adjusted R-squared: 0.6438
F-statistic: 89.57 on 1 and 48 DF, p-value: 1.49e-12
y<-list(3.14,"eggs",lm(speed~dist,data=cars)) %>% print
[[1]]
[1] 3.14
[[2]]
[1] "eggs"
[[3]]
Call:
lm(formula = speed ~ dist, data = cars)
Coefficients:
(Intercept) dist
8.2839 0.1656
cor.test(cars$speed,cars$dist,method="spearman")
Spearman's rank correlation rho
data: cars$speed and cars$dist
S = 3532.8, p-value = 8.825e-14
alternative hypothesis: true rho is not equal to 0
sample estimates:
rho
0.8303568