Project Management
John M. Drake & Andrew W. Park

Project management for reproducible research

This exercise is about practical stuff — managing scientific projects and workflows efficiently to avoid mistakes
and keep the research moving forward.

R Projects

At this point, one might wonder how to keep track of all these files, datasets, and figures. The answer: R
projects. An R project consists of a file in a project directory (with .Rproj extension) and the associated
data, scripts, and other files. When an R project is opened the following occurs (from: http://rstudio.com):

o A new R session (process) is started

o The .Rprofile file in the project’s main directory (if any) is sourced by R

o The .RData file in the project’s main directory is loaded (if project options indicate that it should be
loaded).

o The .Rhistory file in the project’s main directory is loaded into the RStudio History pane (and used for
Console Up/Down arrow command history).

e The current working directory is set to the project directory.

e Previously edited source documents are restored into editor tabs

o Other RStudio settings (e.g. active tabs, splitter positions, etc.) are restored to where they were the
last time the project was closed.

Version control, Git, and Github

R projects are especially useful for version control. Version control is software for managing changes to code,
data, and the other files associated with a project. Version control facilitates undoing revisions to an arbitrary
point in the history of a file and the clean synchronization of changes contributed by multiple users. Git is a
population version control system that works well with R/RStudio through the Github repository service.

Create a Github account:

1. Go to the Github website http://github.com and click on “sign up”.
2. Create a profile (username, email, password).

3. Click “start a project”.

4. Verify email address.

5. Create a project using the provided form.

Link Github account to R/RStudio:

(There are lots of ways to link your installation of R with Github. These instructions are for use with
R/Rstudio installed on a Windows computer such as in the teaching lab. Note that to use Github you also
have to have Git installed on your computer.)

1. Open RStudio.

2. Select File -> New Project -> Version Control -> Git.

3. Go to the website for the project you created and click the green “Clone or download” button; copy the
URL.

4. Paste the copied URL in the RStudio dialog box and navigate to the directory where you would like
your project to be cloned. This will create a local copy of all the files associated with your project.


http://rstudio.com
http://github.com

You should now have a “project” open. In the file explorer you should see the file README.md (if you created
one), an .Rproj file, and another file .gitignore (which, conveniently, you can ignore). To include files
(e.g. data, scripts) in the project, simply create or copy them into the directory. For instance:

Exercise. Copy the MERS data file cases.csv and paste it into your working directory.

Exercise. Create a new script following the prototype we introduced. Your script should load
the MERS data and make a plot.

Now you have two files in your local directory that you don’t have on the Github repository. To synchronize
your local copy and the respository, you need to Commit the changes and then Push the changes to Github.

Exercise. To commit a change, navigate to the “Git” tab in the top right explorer window.
You will see a list of files in your work directory. Select the files that need to be pushed to
Github and click on “Commit”. A dialog box will open. In the top right there is an editing
window where you can register a comment describing the nature of the commit.

Exercise. Once you have committed one or more changes (and documented with comments),
you need to push the changes to the archived version. To do this, click on “Push”. You will
need to enter your Github credentials in the dialog box that pops up. Now refresh the website
for your project. The latest versions of your files should appear.

Github is very useful for collaboration. Multiple users can contribute code to the same project. Projects
can be “branched” and “merged” and Github provides tools to identify and resolve conflicts when multiple
programmers are working on the same project. Although it’s fine to use the Github repository as the definitive
version and create a new local copy (a new project) every time, you don’t have to. Instead, you can leave
your local working directory as it is and simply pull your collaborators contributions every time you start a
new session.

Statistically literate programming with R Markdown

Literate programming is a programming paradigm due to Linux founder Donald Knuth in which natural
langauge explanations of a program’s logic are interspersed with the code snippets that actually perform
the computation. Statistically literate programming applies this paradigm to data analysis. Statistically
literate programming is the idea that the thought process of the data analyst can be captured in a report
that contains explanation and interpretation, the code used to perform an analysis, and the products of that
analysis such as tables of data, quantities (e.g. p-values) and graphs.

There are a handful of ways that one can do statistically literate programming with R/RStudio. In this
exercise, we will use R/Markdown and knitr. Markdown is a lightweight markup language that allows
documents to be rendered in html and other formats (e.g. pdf) with a minimum of special formatting. Knitr
is a system for dynamic report generation in R. Both should already be installed on your computer.

In general, a project developed with R/Markdown will consist of a markdown document (with extension
.Rmd) and the compiled report. You should learn a little more about the functions of R/Markdown and knitr,
but first we will engage in a little learning-by-doing.

Exercise. Create a basic R Markdown document. Go to File -> New File -> R Markdown.
Enter a title and author into the dialog box. Select the desired default output format. Save
the resulting, automatically generated file. To compile the document, click on “Knit” in the
R Studio editor. Study the code and the resulting report.

You now know enough R programming that you should be able to discern what is commentary and what is
code in the .Rmd document. First, notice that the .Rmd document begins with a header and how it is set off
from the rest of the document with three hyphens at the start and end of the header. These are editable
properties. Indeed, there are many more options that we could encode in the header, but do not need to
bother with now.



Next, observe that R chunks begin with three back ticks and curly braces (with the argument “r”). Everything
within this section must be properly formatted R code. R code chunks are indicated in the editor window
with a different background color. Notice that the third R code chunk includes code to generate a plot. The
compiled document shows this code, but also the figure it produces! This is the beauty of statistically literate
programming: it keeps the explanation, code, and results all together in a way that can be inspected and used
both by the data analyst and by others who come later. Moreover, oif the data change (they get updated,
there is a correction, the analyst decides to look at a particular subset of the data), all that is required to
generate a new report is to recompile the document.

Finally, notice that natural language explanation is interspersed with the code chunks. These chunks don’t
require any special designation (like the hyphens for the header or the back ticks for the R code), but are
basically just “everything else”. This natural language commentary can nonetheless be “marked up” with
special symbols that cause the formatted document to display sections titles, bold face or italics, clickable
URLSs, etc. In fact, the Markdown markup language enables quite a lot of reasonably sophisticated typesetting.

In closing, we note that we have only scratched the surface of what can be done with R/Markdown and knitr.

Exercise. Visit the R Markdown website and look around. Especially, read through the
Authoring Basics.

Exercise. Borrowing from your earlier exercises, prepare an analysis of the WNV or MERS
data as a reproducible document using R/Markdown. Compile to a pdf.

Exercise. Add an interactive plotly graph to your reproducible document. Compile to HTML.

This document — and all the others used for this workshop — were written in R/Markdown.


http://rmarkdown.rstudio.com/
http://rmarkdown.rstudio.com/authoring_basics.html

	Project management for reproducible research
	R Projects
	Version control, Git, and Github
	Statistically literate programming with R Markdown

