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Epidemiological data are noisy

Two types of noise:

Observation error: the data are probabilistically related to the true
state of the system

Process noise: the system progresses probabilistically

Environmental noise: some parameter is a random variable
Demographic noise: individual-level chance events
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Noise is addressed using stochastic models
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The SIR model is a continuum approximation
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The SIR model (e.g., dY /dt = βXY /N − γY ) implies that changes in the

states X , Y , and Z are continuous. But, in reality individuals are either

susceptible, infected, or recovered so that X , Y , and Z are integer-valued and

changes in the system state occur as discrete steps. The differential equation is

an idealization.
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Demographic stochasticity

What we seek is a stochastic model for which the system
of ODEs is an appropriate idealization

There are an infinite number of such models, but the
simplest one is a continuous-time, discrete-space Markov
Chain with propensities given by the various terms in the
differential equations

Then the ODEs are a“mean field”theory for the stochastic
model (the average of the fluctuations are given by the
ODEs)

This model may also be interpreted as an event-driven
model with state transition probabilities
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Analytic solution

“Master Equation”

dPk/dt =
∑
l

AklPl (1)

where A is a matrix of transition propensities

This approach is only tractable for very simple models (e.g. SI
and SIS epidemics)
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Simulation approach

Exact simulation is straightforward via Gillespie’s
Direct method:

Initialize
Iteration of a two step process

1 Determine time of the next event
2 Determine change of state at the next event time

Summarize
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Step 1: time to next event

Given system state N, let R(N) be the sum of all the propensities for all
changes of state and GN(s) be the probability that no event occurs in
subsequent time interval s for system state N.

By the Markov assumption

GN(s + δs) = Pr {no event in(t, t + s + δs)}
= Pr {no event in(t, t + s)} × Pr {no event in(t + s, t + s + δs)}
= GN(s)× {1− R(N)× δs}
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Step 1: time to next event

After rearranging

GN(s + δs)− GN(s)

δs
= −R(N)× GN(s)

Letting δs → 0

dGN

ds
= −R(N)× GN(s)

With solution

GN(s) = e−R(N)s

Thus, the probability the next event occurs in (t, t + s) is

FN(s) = 1− e−R(N)s
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Step 1: time to next event

Given event time distribution FN , an exponentially distributed random
event time S can be obtained from a uniform random random variate U1

by setting

U1 = FN(s) = 1− e−R(N)S

and solving to obtain

S = − log(U1)/R(N)
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Step 2: change of state

Let the propensities of event types E1,E2,E3, ... be denoted R1,R2,R3, ....
with total rate Rsum = R(N) =

∑
i Ri . In the long run, events of each

type should occur with relative frequency Ri/R(N). We can randomly
draw event classes with these frequencies by simulating a second uniform
random variate U2 and assigning event class Ei if

R−1
sum

p−1∑
i=1

Ri < U2 ≤ R−1
sum

p∑
i=1

Ri .
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Gillespie’s direct method

1 Label all possible events E1,E2,E3, ...
2 Initialize t = 0 and state N
3 Update step

1 Calculate propensities R1,R2,R3, ...
2 Calculate Rsum = R(N) =

∑
i Ri

3 Generate U1 and transform to obtain S
4 Generate U2 and determine event type Ei

5 Update state based on Ei

6 Update time t = t + S

4 Go to step (3)
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Example with SIR model

Events:
E1: Birth of susceptible individual (X → X + 1)
E2: Infection (X → X − 1,Y → Y + 1)
E3: Recovery (Y → Y − 1,Z → Z + 1)
E4: Death of susceptible individual (X → X − 1)
E5: Death of infected individual (Y → Y − 1)
E6: Death of recovered individual (Z → Z − 1)

Propensities
R1: µ(X + Y + Z)
R2: βXY /N
R3: γY
R4: µX
R5: µy
R6: µZ
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R code for example

We create a function SIR.onestep to perform calculations of each
update step
> SIR.onestep <- function (x, params) { #function to calculate one step of stochastic SIR

+ X <- x[2] #local variable for susceptibles

+ Y <- x[3] #local variable for infecteds

+ Z <- x[4] #local variable for recovereds

+ N <- X+Y+Z #total population size (subject to demographic change)

+ with( #use with as in deterministic model to simplify code

+ as.list(params),

+ {

+ rates <- c(mu*N, beta*X*Y/N, mu*X, mu*Y, gamma*Y, mu*Z)

+ changes <- matrix(c( 1, 0, 0,

+ -1, 1, 0,

+ -1, 0, 0,

+ 0,-1, 0,

+ 0,-1, 1,

+ 0, 0,-1),

+ ncol=3, byrow=TRUE)

+ U1 <- runif(1)

+ tau <- -log(U1)/sum(rates) # exponential waiting time

+ U2 <- runif(1) #uniform random deviate

+ m <- min(which(cumsum(rates)>=U2*sum(rates)))

+ x <- x[2:4] + changes[m,]

+ return(out <- c(tau, x))

+ }

+ )

+ }
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R code for example

Now we write a function SIR.model that iteratively calls SIR.onestep

to simulate an epidemic

> SIR.model <- function (x, params, nstep) { #function to simulate stochastic SIR
+ output <- array(dim=c(nstep+1,4)) #set up array to store results
+ colnames(output) <- c("time","X","Y","Z") #name variables
+ output[1,] <- x #first record of output is initial condition
+ for (k in 1:nstep) { #iterate for nstep steps
+ output[k+1,] <- x <- SIR.onestep(x,params)
+ }
+ output #return output
+ }
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R code for example

Finally, we write a code that calls SIR.model to simulate epidemics

> set.seed(38499583) #set seed
> nsims <- 10 #number of simulations
> pop.size <- 10000 #total population size
> Y0 <- 50 #initial number infected
> X0 <- round(0.98*pop.size) #initial number suscepitlble (~98% of population)
> nstep <- 16000 #number of events to simulate
> xstart <- c(time=0,X=X0,Y=Y0,Z=pop.size-X0-Y0) #initial conditions
> params <- list(mu=0.00001,beta=60,gamma=365/13) #parameters
> data <- vector(mode='list',length=nsims) #initialize list to store the output
> for (k in 1:nsims) { #simulate nsims times
+ data[[k]] <- as.data.frame(SIR.model(xstart,params,nstep))
+ data[[k]]$cum.time <- cumsum(data[[k]]$time)
+ }
> max.time<-data[[1]]$cum.time[max(which(data[[1]]$Y>0))] #maximum time in first simulation
> max.y<-1.8*max(data[[1]]$Y) #find max infected in run 1 and increase by 80% for plot
> plot(Y~cum.time,data=data[[1]],xlab='Time',ylab='Incidence',col=1,xlim=c(0,max.time),ylim=c(0,max.y), type='l', axes=FALSE)
> box()
> axis(2, cex.axis=0.8, las=2)
> for (k in 1:nsims) { #add multiple epidemics to plot
+ lines(Y~cum.time,data=data[[k]],col=k,type='l')
+ }
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R code for example
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Some stochastic phenomena

J-U transition in final outbreak size

J-U transition illustrated by Nasell (1995) in Epidemic models: their structure and
relation to data
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Some stochastic phenomena

Difference between “likely” outcome (median: blue points) and “worst
case scenario” (95th percentile: red points) compared with deterministic
approximation (green line) and R0 (black line)

Park et al. 2009. Science 326:726-728
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Some stochastic phenomena

Critical community size

Ferrari et al. 2013. Philosophical Transactions of the Royal Society B 368:20120141
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Summary

Transmission is obscured by three sources of
noise: observation error, environmental
variability, and intrinsic demographic noise

Gillespie’s direct method is a straightforward way
to study the effects of demographic stochasticity
in small populations

Demographic noise is especially important in
systems where R0 ≈ 1
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