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A model for the transmission of Ebola virus disease

Ebola virus is an emerging pathogen of humans and other non-human primates (Alexander et al., 2015).
Outbreaks are believed to originate from contact with an infected reservoir (possibly a bat) or consump-
tion of infected bushmeat. Outbreaks in human settlements are facilitated by nosocomial transmission
when sufficient infection control procedures are not in place, transmission by care-givers in the com-
munity, and traditional burial practices that may expose a large number of persons simultaneously.
Approximately 30 human outbreaks occurred prior to the West Africa epidemic of 2014-2015 (Alexander
et al., 2015).

Figure 1: Compartmental model for Ebola virus transmission. Adapted from Table 2 in Legrand et al.
(2007).

∗Licensed under the Creative Commons attribution-noncommercial license, http://creativecommons.org/licenses/by-
nc/3.0/. Please share and remix noncommercially, mentioning its origin.
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Legrand et al. (2007) used data from two of these outbreaks – Democratic Republic of Congo (1995) and
Uganda (2000) – to fit a model reflecting these multiple sites of transmission. The model they proposed
(Fig. 1) has six compartments: susceptible persons (S), exposed (incubating) persons (E), infectious
persons (I), hospitalized patients (H), deceased patients that may trasmit during funeral proceedings
(F ), and persons removed from the population (R). Parameters include transmission coefficient in the
community (βI), transmission coefficient in the hospital (βH), transmission coefficient during funerals
(βF ), θ1 is estimated to ensure that the observed fraction of infectious cases are hospitalized, δ1 and
δ2 are estimated so that the overal case fatality rate is as observed. Average incubation period is α−1,
average time from onset of symptoms to hospitalization is γ−1

h , average time from hospitalization to
death is γ−1

dh , mean infectious period for survivors is γ−1
i , mean time from hospitalization to recovery is

γ−1
ih , and mean time from death to burial is γ−1

f . The transition rate from hospitalization to recovery
is further related to other parameters through the relation γih = γiγh

γh−γi while the transition rate from

hospitalization to funeral is γdh = γdγh
γh−γd .

Numerical solution

This flow diagram can be expressed as a system of differential equations. Our objectives in this exercise
are:

1. Numerically solve the differential equation

2. Use latin hypercube sampling to explore the robustness of model results to uncertainty in a 9-
dimensional parameter space

Exercise 1. In R, write a function to return the rates of change for this model. Use deSolve to
numerically solve at the values obtained by Legrand et al. (2007) for Uganda: βI = 2.532, βH = 0.012,
βF = 0.462, α = 1/12, γh = 1/4.2, γd = 1/8, γi = 1/10, γf = 1/2, γd = 1/8), θ1 = 0.65, δ1 = 0.47,
δ2 = 0.42. Confusingly, βx parameters are in units of w−1 while α and γx parameters are in units of
d−1. Be sure to standardize to a common timescale. Additionally, assume the population size is 470,000
and that the outbreak was initiated by nine cases.

Exercise 2. Plot the six state variables for the first 52 weeks of the outbreak.

This exercise will investigate the effectiveness of early interventions at reducing the total epidemic size.

Exercise 3. Modify your model to allow interventions at time T . Legrand et al. assumed that inter-
ventions were completely efficient after T such that, after interventions (i) no transmission occurred at
hospitals or during burial, and (ii) transmission in the community was decreased by a factor (1 − z).
In Uganda, interventions are assumed to have been initatied on the date that Ebola virus disease was
confirmed (15 October 2015). Although Legrand et al. (2007) do not state this, a comparison of Figure
1 in their paper and Figure 2 in Oyok et al. (2001) shows that Legrand et al. are dating the outbreak
from 10 September 2015.

Some of these parameters are rather poorly estimated and there is an argument to be made that the
transmission rates are at best weakly identifiable. How much does this uncertainty influence our conclu-
sions? We can answer this question using latin hypercube sampling. The first step is to determine how
best to summarize each parameterization. A natural suggestion is the total epidemic size, which may be
extracted from the R class in the final row of the ode output using the function tail.
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> get.size <- function(out) tail(out$R,1)

First, as a baseline, we use T (the time of intervention) as a control parameter and investigate the effect
of T on total epidemic size. Evidently, the total epidemic size increases almost exponentially with the
time to intervention. (Note the log scale on the y-axis.)

2 4 6 8 10 12 14

50

100

200

500

1000

2000

Intervention time

E
pi

de
m

ic
 s

iz
e

Latin hypercube sampling

Now we seek to use latin hypercube sampling to explore the 12-dimensional parameter space. First, use
the lhs package to simulate a large number (say, 1000) points in the 12-dimensional unit cube.

> require(lhs) #add the lhs library

> h <- 1000 #choose number of points

> set.seed(6242015)

> lhs<-maximinLHS(h,12) #simulate

To map these points in the unit cube to our parameters, we need minimum and maximum values for
each.
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> betaI.min <- 1

> betaI.max <- 4

> betaH.min <- 0.01

> betaH.max <- 0.5

> betaF.min <- 0.1

> betaF.max <- 4

> alpha.min <- 7/21

> alpha.max <- 7/2

> gammah.min <- 7/2

> gammah.max <- 7/1

> gammai.min <- 7/21

> gammai.max <- 7/2

> gammaf.min <- 7/7

> gammaf.max <- 7/1

> gammad.min <- 7/21

> gammad.max <- 7/2

> theta1.min <- 0

> theta1.max <- 1

> delta1.min <- 0

> delta1.max <- 1

> delta2.min <- 0

> delta2.max <- 1

> z.min <- 0

> z.max <- 1

Now we can generate a “parameter set” by rescaling our simulated latin hypercube sample.

> params.set <- cbind(

+ betaI = lhs[,1]*(betaI.max-betaI.min)+betaI.min,

+ betaH = lhs[,2]*(betaH.max-betaH.min)+betaH.min,

+ betaF = lhs[,3]*(betaF.max-betaF.min)+betaF.min,

+ alpha = lhs[,4]*(alpha.max-alpha.min)+alpha.min,

+ gammah = lhs[,5]*(gammah.max-gammah.min)+gammah.min,

+ gammai = lhs[,6]*(gammai.max-gammai.min)+gammai.min,

+ gammaf = lhs[,7]*(gammaf.max-gammaf.min)+gammaf.min,

+ gammad = lhs[,8]*(gammad.max-gammad.min)+gammad.min,

+ theta1 = lhs[,9]*(theta1.max-theta1.min)+theta1.min,

+ delta1 = lhs[,10]*(delta1.max-delta1.min)+delta1.min,

+ delta2 = lhs[,11]*(delta2.max-delta2.min)+delta2.min,

+ z = lhs[,12]*(z.max-z.min)+z.min)

These are all the simulated parameters we need to explore how these parameters affect the total epidemic
size. To facilitate later plotting, we decide how many different levels of T to consider.

> levels <- 15

Even though we have simulated 1000 points, to speed up computing we will use only a fraction of these
for this demonstration.

> h2 <-250
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Finally, we set up a nested loop, first to cycle through different values of T , then to cycle through
different simulated parameter sets. Note the pre-allocated data frame and use of the counter j, also to
speed up evaluation.

> j <- 1

> data <- data.frame(matrix(rep(NA,levels*h2*14),nrow=levels*h2))

> for(i in 1:h2){

+ for (T in intervention.times){

+

+ data[j,1:13] <- params <- as.list(c(params.set[i,], T=T))

+ out <- as.data.frame(ode(xstart, times, legrand2, params))

+ data[j,14] <- get.size(out)

+ j <- j+1

+

+ }

+ }

> names(data) <- c(names(params),'outbreak.size')
> save(data, file='data.Rdata')

What do the results look like? We can plot each simulated value as a point and compare this with the
estimate from Legrand et al.

> load('data.Rdata')
> plot(intervention.times, output0, type='l', lwd=3, ylim=c(10,2e6), log='y',
+ xlab='Intervention times',
+ ylab='Epidemic size')
> points(data$T, data$outbreak.size, pch=19, cex=0.3, col='blue')
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This is somewhat difficult to interpret, however, so we will summarize these points with a box-and-
whisker plot.

> boxplot(data$outbreak.size~data$T, ylim=c(10,2e6), border='blue', log='y', pch='.')
> par(new=TRUE)

> plot(intervention.times, output0, type='l', lwd=3, ylim=c(10,2e6), log='y', xlab='Intervention times', ylab='Epidemic size', axes=FALSE)
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Evidently, our best guesses at parameter values are somewhat pessimistic.

Exercise 4. In R, the function cor may be used to calculate the correlation between two sets of numbers.
Write a script to determine which variable is most highly correlated with infections prevented.

Exercise 5. Having determined which variable total infections prevented is most sensitive to, re-visit
the range of values that was considered for this parameter. Choose an alternative lower or upper bound
and re-run the latin hypercube analysis. Does this change the result very much? What parameter would
you recommend to be most important for further research?

One problem with the approach adopted here is that we’re always changing more than one variable at
a time. Is there any way to determine the effect of each parameter on the outcome while averaging
over the other variables? Under such a thought experiment, can we identify which parameters are most
important? If we may assume that the effect of a parameter on number of preventions is monotonic,
then these questions can be answered by inspecting the partial rank correlations between each of the
parameters and the number of infections prevented. Partial rank correlations can be computed using
the pcc function in the R package sensitivity.

> library(sensitivity)

> bonferroni.alpha <- 0.05/12

> prcc <- pcc(data[,1:12], data[,14], nboot = 1000, rank=TRUE, conf=1-bonferroni.alpha)

> save(prcc, file='prcc.Rdata')
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We can view a table of the resulting partial correlation coefficients. Since none of the (penalized)
confidence intervals contains zero, we conclude that all are significant and produce a plot showing their
relative magnitudes.

> library(sensitivity)

> load('prcc.Rdata')
> summary <- print(prcc)

Call:

pcc(X = data[, 1:12], y = data[, 14], rank = TRUE, nboot = 1000, conf = 1 - bonferroni.alpha)

Partial Rank Correlation Coefficients (PRCC):

original bias std. error min. c.i. max. c.i.

betaI 0.67248051 6.363399e-04 0.009761728 0.64310749 0.69791859

betaH 0.14237727 2.155177e-04 0.016735843 0.09516780 0.20156103

betaF 0.38375169 -1.800964e-04 0.015026960 0.33930083 0.42711776

alpha 0.13365564 -1.847920e-03 0.015960506 0.09067389 0.19036413

gammah -0.29843298 -4.558288e-04 0.015630247 -0.34523367 -0.25363759

gammai -0.40145192 8.213968e-05 0.014661182 -0.44181729 -0.36072851

gammaf -0.29665329 8.884918e-05 0.015991029 -0.35103025 -0.24531861

gammad 0.00655676 -3.198202e-04 0.017253428 -0.04209687 0.06078493

theta1 -0.50054157 6.728586e-04 0.012576595 -0.54006219 -0.46892242

delta1 0.17332982 -5.273522e-04 0.015414134 0.12755639 0.22056686

delta2 0.29419951 -1.087162e-03 0.016020105 0.25375436 0.34707571

z -0.04187132 7.526227e-04 0.016298982 -0.08674951 0.00238828

> par(mar=c(7,4,4,2)+0.1)

> plot(summary$original, main='Partial rank correlation coefficients', ylim=c(-1,1),

+ xlab='', ylab='Coefficient',
+ axes=FALSE)

> axis(2)

> axis(1, at=seq(1:12), labels=row.names(summary), las=2)

> mtext(text='Parameter', side=1, line=4.5)

> box()

> for(i in 1:12) lines(c(i,i),c(summary[i,4], summary[i,5]))

> abline(h=0)
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