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School outbreak

Boarding School, England
Jan 1978

# Boys confined to bed

Raises numerous questions:

e What is etiological agent? B S ooy
* Is it a novel pathogen?

e |s avaccine available?



Multifaceted approach to understanding
infectious diseases

Medicine
>4 R But these approaches don’t address

important questions at population level ...

Microbiology

Immunology
?M Vaccines & Drugs

B Cell
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Modeling questions |I.
Control Implications
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aimed at age/
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to implement
controls?

How to prevent
spatial spread?

Drugs, Vaccines
or other control
measures?
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evolving?
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What is a model?

Ditferent types of models:

A mathematical/computational model is an abstract
model that uses mathematical language to describe
behaviour of a system

A Statistical model attempts to describe
relationships between observed quantities and
iIndependent variables

Developing a mechanistic model is different from
statistical analyses of data



Abstraction

Purpose = Components

: / Conceptualization

Abstraction

Interpretation

T

Assumptions = Limitations Validation

T ——————————




What's a ‘Good’ Model?

» Choice of model depends crucially on focal

guestion and available data (hammer & chisel or
oneumatic drill?)

» Use model principally for
+ understanding nature
+ making predictions



Judging a Model...

Three fundamental features of models, often opposing forces:

Accuracy
Capture observed patterns (qualitative or quantitative?) and
make predictions

Increases with model complexity

Transparency
Ability to understand model components

Decreases with model complexity

Flexibility
How easily can model be adapted to new scenarios?
Decreases with model complexity
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‘How’ do you Model??

Analytical Models

Concentrate on problems that can be expressed and
analysed fully using analytical approaches

Microaaft

: @ <\ The MathWorks

Problem-based Models 2
Construct most “appropriate” model and use whatever m Q

combination of methods for analysis and prediction

Ready-Made Software ModelMaker oo

.%#

ModelMaker

www.modelkinetix.com/modelmaker/modelmaker.html
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Resource Materials

Keeling & Rohani (2008)

Vynnycky & White (2010)
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Modelling Infectious Diseases

Objective 1: Setting up simple models Objective 4: Variability & Sensitivity
Different transmission modes Stochastic implementation
Basic Reproduction Ratio (Ro), Parameter uncertainty

Simple Epidemics, Invasion
threshold & extinction

Equilibrium analysis

Objective 5: Heterogeneities
Risk structure
Age-structured transmission
(Realistic pathogenesis)
(Seasonality)

Objective 2: Control
Infection management

Obijective 3: Statistical estimation
R, and other parameters



Steps in Developing a
Model

‘Formulate problem/objectives H
'Conceptual model diagram H
- — y e :
\Dynamic lequatio?s-]
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The simplest models

- Let’'s develop a model for Boarding School
iInfluenza outbreak

- Some important choices need to be made at
outset

What do we want to keep track of?

+ Amount of virus within affected population?

- Antibody titre of everyone in population (school)?
» Concentration of virus on fomite surfaces?




Categorising individuals

Healthy Incubating Diseased j u

Susceptible Exposed/latent Infectious Recovered/Immune

Infectious, Infectious, Infectious,
latent symptomatic quarantined

Incubating



The simplest models

Pragmatic choice: categorise individuals in population according
to their infection status, eg:

Susceptible

Infectious These are our
Recovered/immune/ “gystem variables”




The simplest models

2. What model structure?
-- Determined by pathogen biology

S| — signifies fatal infection




The simplest models

2. What model structure?
-- Determined by pathogen biology

Carrier

Susceptible Infectious Recovered

Susceptible Exposed Infectious Recovered

; Vectored transmission

Infectious Susceptible



The simplest models

What model structure?

Depends on what do we know about pathogen (eg, influenza)
Directly transmitted (aerosol)
An acute infection
Lifelong immunity (to that strain)

Transmission Recovery




The simplest models

Transmission  Recovery

Flow between classes/compartments determined by details of host
population structure and pathogen biology

Host population siz
Contact rates
Pathogen infectivity

These are our
“parameters”




The simplest models

Deterministic or Stochastic?

120 « T -
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50 independent
stochastic
realizations
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Deterministic
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Ow average, stochastic stmulations tdentical to deterministic
predictions, though tndividual realizations may be quite different




Realism Vs [ransparency

Multi-Scale ‘
0 2 AR y
' 2 Uy ~ £ Ed| a
by ’ 1 -]
Network ‘ \ o e
. n::::
2 5] ° ,/ 1v ¥ e
g/ Vo \ 9 o sead
: 63 $.0 i
f . \ 9 By ,,“ u.u:h
0/ :\ ‘.vA.l
B ) ‘ Agent-Based

Structured

Solution tools




The simplest models

We've settled on a deterministic SIR model — now what?

How do we write down some equations to describe spread of ‘flu in
this population?
Assign each system variable a uniqgue Roman letter, eg:
Susceptible, S (proportion) or X (number)
Infectious, | (proportion) or Y (number)
Recovered/Immune, R (proportion) or Z (number)
Assign parameters a unique (typically Greek) letter, eg:
Contact rate, «



Very important!

NOTHING SPECIAL ABOUT MY CHOICE OF NOTATION -
USE OF PARTICULAR LETTERS HIGHLY
IDIOSYNCRATIC

OTHER AUTHORS MAY USE DIFFERENT LETTERS TO
PENOTE SAME VARIABLES OR PARAMETERS.

YOWU CANNOT AUTOMATICALLY ASSUME THAT B IN
TWO DIFFERENT PAPERS MEANS THE SAME THING!



3. Model equations



Bath tub example

Water inflow

Let W(t) be amount of water in rate, |(t)

bathtub (ml) =i

Need a dynamic equation that tells
us how W(t) will change through
time

Water outflow
rate, O(t)

Consider a small time interval, 6t
Then,

W(t+ 6t) = W(t) + Inflow rate x elapsed time - Outflow rate x elapsed time



Bath tub example

Water inflow
rate, I(t)

W(t+6t)=W(t)+ I x5t — O x 3t

~y
* Rearrange
W(t+ot) -We) _
St - Water outflow
rate, O(t)

* Left hand side is a difference quotient for derivative of W
with respect to time

* [etot = 0



Many Linked bath tulbs
= compartment models



Model equations

If we know X, and Y, we can predict X s; and Y.,
where 0t is some (very short) time later:

Xiist = X — Transmission
Yi.st= Yi+ Transmission

* Transmission rate « Contacts x P(Infectious)x P(Transmission)

per susceptible  _ <. Lt ‘1
N
Y,
= KU —
N
Y;

N B=vK




Model equations

If we know X, and Y, we can predict X5, and Y.,
where 06t is some (very short) time later:

Kivor = K= X (B 0t) Yi/N
Yo=Y+ X (P Ot) Y/N - Recovery

* Recovery assumed at constant rate, Y



Basic questions”?

Xy = Xi— (B 81) X, Y,/N
Yieot=Yi+ (B O1) X, Yi/N-(yot) Y,
Loy =Zi+ (y01) Y,

‘Average infectious period given by 1/y [why?]




Mean life time calculation

Consider recovery of a single infectious individual: I (t) = et

1:/ ce Vidt =

Hence, probability density function is ye

> 1
T :/ tye Vidt = —
0 Y

=20

Recall: For random variable x, with probability density function f(x), mean is
given by /°° o f () da
0



An ODE model

Consider equation describing Susceptible dynamics
Kivot = Ki— (B 6t) Xi Y¢/N

Re-write as
Xt+6t B Xt = - ([3 6t) Xt Yt/N
(Xt+6t_ Xt)/ ol = - |3 Xt Yt/N

By fundamental theorem of calculus, as 6t — O,
dX/dit=- X Y/N



An ODE SIR model

o By definition, X+Y+Z = N
o These equations describe rates of change in state variables

o Parameters (3, y represent instantaneous rates



An ODE SIR model

In my lectures (as in K&R 2008),
variables X, Y & Z refer to the
numbers of individuals in each class.
Variables S, I, & R refer to the

proportions of the population in
each class

o Parameters f, y represent instantaneous rates



An ODE SIR model

-« |mportant to notice: transmission rate is assumed to depend on
! frequency of infecteds in population (Y/N). Hence, this is
LL frequency-dependent transmission




Simulating epidemics

Infectious period (1/y) = 3 days

Infectious period (1/y) = 10 days

Infectious period (1/y) = 20 days

Infectious period (1/y) = 30 days
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Model dynamics

* As parameters are varied, model predicts
different outcomes

e Can we anticipate trajectories without
resorting to numerical integration?

e Question: under what conditions will an
infectious disease invade a system?



The Invasion Threshold

- When can an infectious disease invade a population?

Initial conditions: X(0) = N, Y(0) =1, Z(0) =0
Invasion only if dY/dt > O
e, BXYIN=VY >0 =Y(BX/N-y)>0

if and only if X/N > v/B
Since X=N, requires 1> v/
Or By > 1



Basic Reproductive Ratio, R,

Ratio B/y gives number of cases before infected individual

recovers

Universally referred to as R, or Basic Reproductive Ratio

Definition: Number of secondary cases generated by a typical
infected in an entirely susceptible population

0 0
00® o 0°% o
R0<1

NoO Invasion

e AL
000 o 0°“ o
R0:4

Successful invasion



Ro and Model parameters
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Ro
Hepatitis C

Seasonal Influenza
1918 Influenza
Ebola

SARS

Phocine Distemper
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The death of an epidemic

SIR equations, let’s divide equation for dX/dt by dZ/dt:
dX/dZ = - (B X Y/N)/(vY)
= - Ry X/N

Integrate with respect to Z
X(t) = X(0) e -4t RoN

When epidemic is over, by definition, we have X(e), Y(oo)
(=0), and Z(eo)

X(o0) = N = Z(c0) = X(Q) e Z(=) Ro/\



The death of an epidemic

S0, N = Z(o0) - X(0) e -4(=)Ro/N = (

Solve this numerically (‘transcendental’ equation)

Epidemic dies out because

there are too few infectives,

not because of too few :
susceptibles

Kermack & McKendrick (1927)
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Simple Epidemics

Number

| “Measles” 886 /yr OS: ) 17

“Influenza” 180 /yr 08: 1 2

1 “Chickenpox” 315 /yr 0'832 7
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Frequency- or Density-Dependent
Transmission?

Assumed contact rate, k, constant: ‘mixing’ is

independent of population size: frequency-dependent
transmission. Reasonable”?

If we assume contact rate to be k’N (increases with
‘crowding’), then transmission rate is

dX/dt = -BXY
Called density-dependent transmission

Population Size



Does it Matter?

Again, pathogen invasion if dY/dt > O
It initially everyone susceptible (X=N),
BNY —vY>0 = Y(BN -y) > O
In this case, we define Ry= BN/y, so need Ry>1

Hence, for any particular B and vy, there’s now a threshold
population density required for invasion




Incorporating virulence

 Assume infectious individuals die at rate a

dY
R VD
dt Tt



Population Size
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What should we do?

It population size doesn’t change, FD & DD
equivalent (Bro = N X Bpp)

Otherwise:

Frequency-dependence generally more
appropriate in large populations with
heterogenous mixing, STDs, vector-borne
pathogens

Density-dependence representative of wildlife &
livestock diseases (especially with smaller
population sizes)



