Modeling Infectious Diseases

- Pej Rohani & John Drake
- Odum School of Ecology
- University of Georgia

School outbreak

Boarding School, England Jan 1978

Raises numerous questions:

- What is etiological agent?
- Is it a novel pathogen?
- Is a vaccine available?

Multifaceted approach to understanding infectious diseases

Medicine

Genomics

But these approaches don't address important questions at population level ...

Microbiology

Immunology

Vaccines & Drugs

Modeling questions I. Basics

Modeling questions II. Control Implications

Emerging pathogens

What is a model?

- Different types of models:
 - A mathematical/computational model is an abstract model that uses mathematical language to describe behaviour of a system
 - A **Statistical model** attempts to describe relationships between observed quantities and independent variables
- Developing a mechanistic model is different from statistical analyses of data

Abstraction

What's a 'Good' Model?

- Choice of model depends crucially on focal question and available data (hammer & chisel or pneumatic drill?)
- Use model principally for
 - understanding nature
 - making predictions

Judging a Model...

- Three fundamental features of models, often opposing forces:
 - **Accuracy**

•

•

- Capture observed patterns (qualitative or quantitative?) and make predictions
- Increases with model complexity

<u>Transparency</u>

- Ability to understand model components
- Decreases with model complexity

Flexibility

- How easily can model be adapted to new scenarios?
- Decreases with model complexity

Realism Vs Transparency

Solution tools

'How' do you Model?

Analytical Models

Concentrate on problems that can be expressed and analysed fully using analytical approaches

Problem-based Models

Construct most "appropriate" model and use whatever combination of methods for analysis and prediction

Ready-Made Software

ModelMaker

www.modelkinetix.com/modelmaker/modelmaker.html

Global simulators

Resource Materials

- Keeling & Rohani (2008)
- Vynnycky & White (2010)
- Anderson & May (1991)
- Otto & Day (2007)
- Diekmann et al. (2012)

Modelling Infectious Diseases

Objective 1: Setting up simple models

- Different transmission modes
 - Basic Reproduction Ratio (R₀), Simple Epidemics, Invasion threshold & extinction
- Equilibrium analysis

Objective 2: Control

Infection management

Objective 3: Statistical estimation

R₀ and other parameters

- **Objective 4:** Variability & Sensitivity
 - Stochastic implementation
 - Parameter uncertainty
- Objective 5: Heterogeneities
 - Risk structure
 - Age-structured transmission
 - (Realistic pathogenesis)
 - (Seasonality)

Steps in Developing a Model

- Let's develop a model for Boarding School influenza outbreak
- Some important choices need to be made at outset
- 1. What do we want to keep track of?
 - Amount of virus within affected population?
 - Antibody titre of everyone in population (school)?
 - *Concentration* of virus on fomite surfaces?

Categorising individuals

 Pragmatic choice: categorise individuals in population according to their infection status, eg:

Susceptible
Infectious
Recovered/Immune
These are our "system variables"

2. What model structure?

-- Determined by pathogen biology

2. What model structure?

-- Determined by pathogen biology

What model structure?

- · Depends on what do we know about pathogen (eg, influenza)
 - Directly transmitted (aerosol)
 - An acute infection
 - Lifelong immunity (to that strain)

• Flow between classes/compartments determined by details of host population structure and pathogen biology

Deterministic or Stochastic?

On <u>average</u>, stochastic simulations identical to deterministic predictions, though individual realizations may be quite different

Realism Vs Transparency

- We've settled on a deterministic SIR model now what?
- How do we write down some equations to describe spread of 'flu in this population?
- Assign each system variable a unique Roman letter, eg:
 - Susceptible, S (proportion) or X (number)
 - Infectious, I (proportion) or Y (number)
 - Recovered/Immune, R (proportion) or Z (number)
- Assign parameters a unique (typically Greek) letter, eg:
 - Contact rate, κ
 - Pathogen infectivity, $\boldsymbol{\nu}$

Very important!

- NOTHING SPECIAL ABOUT MY CHOICE OF NOTATION -USE OF PARTICULAR LETTERS HIGHLY
 IDIOSYNCRATIC
- · OTHER AUTHORS MAY USE DIFFERENT LETTERS TO DENOTE SAME VARIABLES OR PARAMETERS.
- · YOU CANNOT AUTOMATICALLY ASSUME THAT β IN TWO DIFFERENT PAPERS MEANS THE SAME THING!

3. Model equations

Bath tub example

- Let W(t) be amount of water in bathtub (ml)
- Need a <u>dynamic equation</u> that tells us how W(t) will change through time

- Consider a small time interval, δt
- Then,

 $W(t + \delta t) = W(t) + Inflow rate \times elapsed time - Outflow rate \times elapsed time$

Bath tub example

Rearrange

$$\frac{W(t+\delta t) - W(t)}{\delta t} = I - O$$

Water outflow rate, O(t)

rate, I(t)

 Left hand side is a <u>difference quotient</u> for derivative of W with respect to time

* Let
$$\delta t \to 0$$

 $\frac{dW}{dt} = I - O$

Many Linked bath tubs = compartment models

Model equations

• If we know X_t and Y_t , we can predict $X_{t+\delta t}$ and $Y_{t+\delta t}$, where δt is some (very short) time later:

$$\begin{split} X_{t+\delta t} &= X_t - \text{Transmission} \\ Y_{t+\delta t} &= Y_t + \text{Transmission} \end{split}$$

• Transmission rate \propto Contacts x P(Infectious) x P(Transmission) per susceptible $= \kappa \times \delta t \qquad \times \frac{Y_t}{N} \qquad \qquad \times \nu$

$$= \kappa \nu \frac{Y_t}{N} \\ = \beta \frac{Y_t}{N}$$

Model equations

• If we know X_t and Y_t , we can predict $X_{t+\delta t}$ and $Y_{t+\delta t}$, where δt is some (very short) time later:

 $X_{t+\delta t} = X_t - X_t (\beta \ \delta t) \ Y_t / N$ $Y_{t+\delta t} = Y_t + X_t (\beta \ \delta t) \ Y_t / N - \text{Recovery}$

Recovery assumed at constant rate,

Basic questions?

$$\begin{aligned} X_{t+\delta t} &= X_t - (\beta \ \delta t) \ X_t \ Y_t / N \\ Y_{t+\delta t} &= Y_t + (\beta \ \delta t) \ X_t \ Y_t / N - (\gamma \ \delta t) \ Y_t \\ Z_{t+\delta t} &= Z_t + (\gamma \ \delta t) \ Y_t \end{aligned}$$

•Average infectious period given by 1/γ [why?]

Mean life time calculation

Consider recovery of a single infectious individual: $I(t) = e^{-\gamma t}$

$$1 = \int_{o}^{\infty} c e^{-\gamma t} dt = \frac{c}{\gamma}$$

Hence, probability density function is $\gamma e^{-\gamma t}$

$$\tau = \int_0^\infty t\gamma e^{-\gamma t} dt = \frac{1}{\gamma}$$

Recall: For random variable x, with probability density function f(x), mean is given by $\int_0^\infty x f(x) dx$

An ODE model

- Consider equation describing Susceptible dynamics $X_{t+\delta t} = X_t - (\beta \ \delta t) X_t Y_t/N$
- Re-write as

 $X_{t+\delta t} - X_t = - (\beta \ \delta t) X_t \ Y_t / N$ $(X_{t+\delta t} - X_t) / \ \delta t = - \beta \ X_t \ Y_t / N$

By fundamental theorem of calculus, as $\delta t \rightarrow 0$, dX/dt = - $\beta \times Y/N$

An ODE SIR model

- **o** By definition, X+Y+Z = N
- These equations describe rates of change in state variables
- \circ Parameters β , γ represent instantaneous rates

An ODE SIR model

In my lectures (as in K&R 2008), variables X, Y & Z refer to the <u>numbers</u> of individuals in each class. Variables S, I, & R refer to the <u>proportions</u> of the population in each class

O THESE EQUATIONS DESCRIDE LATES OF CHANGE IN STATE VARIABLES

 \circ Parameters β,γ represent instantaneous rates

An ODE SIR model

 Important to notice: transmission rate is assumed to depend on <u>frequency</u> of infecteds in population (Y/N). Hence, this is <u>frequency-dependent transmission</u>

Simulating epidemics

Model dynamics

- As parameters are varied, model predicts different outcomes
- Can we anticipate trajectories without resorting to numerical integration?
- Question: under what conditions will an infectious disease invade a system?

The Invasion Threshold

- When can an infectious disease invade a population?
- Initial conditions: X(0) = N, Y(0) = 1, Z(0) = 0
- Invasion only if dY/dt > 0
- ie, $\beta XY/N \gamma Y > 0 \implies Y(\beta X/N \gamma) > 0$
 - If and only if $X/N > \gamma/\beta$
 - Since X=N, requires $1 > \gamma/\beta$
 - Or $\beta/\gamma > 1$

Kermack & McKendrick (1927)

Basic Reproductive Ratio, R₀

- Ratio β/γ gives number of cases before infected individual recovers
- Universally referred to as R₀ or **Basic Reproductive Ratio**
- Definition: Number of secondary cases generated by a typical infected in an entirely susceptible population

No invasion

Successful invasion

R₀ and Model parameters

The death of an epidemic

- SIR equations, let's divide equation for dX/dt by dZ/dt: dX/dZ = - (β X Y/N)/(γ Y) = - R₀ X/N
- Integrate with respect to Z
 - $X(t) = X(0) e^{-Z(t) R_0/N}$
- When epidemic is over, by definition, we have X(∞), Y(∞) (=0), and Z(∞)

•
$$X(\infty) = N - Z(\infty) = X(0) e^{-Z(\infty) R_0/N}$$

The death of an epidemic

- So, $N Z(\infty) X(0) e^{-Z(\infty) R_0/N} = 0$
- Solve this numerically ('transcendental' equation)

Epidemic dies out because there are too few infectives, not because of too few susceptibles

Kermack & McKendrick (1927)

Simple Epidemics

Frequency- or Density-Dependent Transmission?

- Assumed contact rate, κ, constant: 'mixing' is independent of population size: frequency-dependent transmission. Reasonable?
- If we assume contact rate to be κ'N (increases with 'crowding'), then transmission rate is
 dX/dt = -βXY
- Called density-dependent transmission

Does it Matter?

- Again, pathogen invasion if dY/dt > 0
- If initially everyone susceptible (X=N), $\beta NY - \gamma Y > 0 \Rightarrow Y(\beta N - \gamma) > 0$
- In this case, we define $R_0 = \beta N/\gamma$, so need $R_0 > 1$
- Hence, for any particular β and γ, there's now a <u>threshold</u> population density required for invasion

Incorporating virulence

• Assume infectious individuals die at rate α

$$\frac{dY}{dt} = \dots - \gamma Y - \alpha Y$$

Transmission & R₀

Density Dependent

Frequency Dependent

 β =426, γ =24, α =18, μ =0.02

No invasion threshold

What should we do?

- If population size doesn't change, FD & DD equivalent ($\beta_{FD} = N \times \beta_{DD}$)
- Otherwise:
 - Frequency-dependence generally more appropriate in large populations with heterogenous mixing, STDs, vector-borne pathogens
 - Density-dependence representative of wildlife & livestock diseases (especially with smaller population sizes)