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Raises	numerous	ques@ons: 

• What	is	e@ological	agent? 

• Is	it	a	novel	pathogen? 

• Is	a	vaccine	available?
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Vaccines & Drugs

Medicine

Microbiology

ImmunologyGenomics

But these approaches don’t address 
important questions at population level ...

Multifaceted approach to understanding 
infectious diseases
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What	
determines	
invasion?

What	does		
growth	rate	
tell	us?

Why	does	
epidemic	
turn	over?

Why	did	it	
go	ex@nct?

Modeling questions I.  
Basics



When	is	best	
to	implement	
controls?

How	
dras@c?

Random	or	
aimed	at	age/
core	group?

How	to	prevent	
invasion/
reinvasion?

Is	it	
evolving?

Drugs,	Vaccines	
or	other	control	
measures?

How	to	prevent	
spa@al	spread?

Probability	of	
invasion	or	
ex@nc@on

Modeling questions II. 
Control Implications



Emerging pathogens



What is a model?
• Different types of models: 

• A mathematical/computational model is an abstract 
model that uses mathematical language to describe 
behaviour of a system  

• A Statistical model attempts to describe 
relationships between observed quantities and 
independent variables 

• Developing a mechanistic model is different from 
statistical analyses of data



Reality Conceptualization

Abstraction

Purpose Components

Assumptions Limitations Validation

Interpretation

Abstraction



What’s a ‘Good’ Model?

• Choice of model depends crucially on focal 
question and available data (hammer & chisel or 
pneumatic drill?) 

• Use model principally for 
• understanding nature 
• making predictions



Judging a Model…
• Three fundamental features of models, often opposing forces: 

• Accuracy 
• Capture observed patterns (qualitative or quantitative?) and 

make predictions 
• Increases with model complexity 

• Transparency 
• Ability to understand model components 
• Decreases with model complexity 

• Flexibility 
• How easily can model be adapted to new scenarios? 
• Decreases with model complexity



Solution tools

Re
so

lu
tio

n

Homogeneous
Structured

Network

Multi-Scale

Agent-Based

“R
ea

lis
m

”
Tr

an
sp

ar
en

cy
Realism Vs Transparency



Ready-Made	So+ware 

ModelMaker 

www.modelkine@x.com/modelmaker/modelmaker.html

Analy2cal	Models 

Concentrate	on	problems	that	can	be	expressed	and	
analysed	fully	using	analy@cal	approaches

Problem-based	Models 

Construct	most	“appropriate”	model	and	use	whatever	
combina@on	of	methods	for	analysis	and	predic@on

‘How’ do you Model?



Global simulators



Resource Materials
• Keeling & Rohani (2008) 

• Vynnycky & White (2010) 

• Anderson & May (1991) 

• Otto & Day (2007) 

• Diekmann et al. (2012)



Modelling Infectious Diseases

Objective 1: Setting up simple models  
Different transmission modes  

Basic Reproduction Ratio (R₀), 
Simple Epidemics, Invasion 
threshold & extinction 

Equilibrium analysis 

Objective 2: Control 
Infection management 

Objective 3: Statistical estimation  
R0 and other parameters

Objective 4: Variability & Sensitivity 
Stochastic implementation 
Parameter uncertainty 

Objective 5:  Heterogeneities  
Risk structure 
Age-structured transmission 
(Realistic pathogenesis) 
(Seasonality) 



Formulate problem/objectives

Conceptual model diagram

Dynamic equations

Computer code

Steps in Developing a 
Model



The simplest models

• Let’s develop a model for Boarding School 
influenza outbreak 

• Some important choices need to be made at 
outset 

1. What do we want to keep track of? 
• Amount of virus within affected population? 
• Antibody titre of everyone in population (school)? 
• Concentration of virus on fomite surfaces?



Exposed/latent Infectious Recovered/Immune Infection statusSusceptible

Healthy Incubating Diseased Clinical status

Incubating Infectious, 
latent

Infectious, 
symptomatic

Infectious, 
quarantined

Categorising individuals

Time



The simplest models

• Pragmatic choice: categorise individuals in population according 
to their infection status, eg: 

• Susceptible 
• Infectious 
• Recovered/Immune

These are our 
“system variables”



The simplest models
2. What model structure?   

-- Determined by pathogen biology

Suscep@ble Infec@ous

Recovered

SI – signifies fatal infection

Suscep@ble Infec@ous SIR – recovery after infection

RecoveredSuscep@ble Infec@ous SEIR – latencyExposed

Suscep@ble Infec@ous SIS – no immunity elicited



The simplest models
2. What model structure?   

-- Determined by pathogen biology

Carrier

Suscep@ble Infec@ous
SIR – with carriers

RecoveredSuscep@ble Infec@ous

Vectored transmission

Exposed

Recovered

Suscep@bleInfec@ous Exposed



The simplest models
• What model structure? 
• Depends on what do we know about pathogen (eg, influenza) 

• Directly transmitted (aerosol) 
• An acute infection 
• Lifelong immunity (to that strain)

Suscep@ble Infec@ous Recovered

Transmission Recovery



The simplest models

• Flow between classes/compartments determined by details of host 
population structure and pathogen biology 

• Host population size 
• Contact rates 
• Pathogen infectivity

These are our 
“parameters”

Suscep@ble Infec@ous Recovered

Transmission Recovery



The simplest models

Deterministic
50 independent 
stochastic 
realizations

On average, stochastic simulations identical to deterministic 
predictions, though individual realizations may be quite different

• Deterministic or Stochastic?



Solution tools
Homogeneous

Structured

Network

Multi-Scale

Agent-Based

Realism Vs Transparency



The simplest models
• We’ve settled on a deterministic SIR model – now what? 

• How do we write down some equations to describe spread of ‘flu in 
this population? 

• Assign each system variable a unique Roman letter, eg: 
• Susceptible, S (proportion) or X (number) 
• Infectious, I (proportion) or Y (number) 
• Recovered/Immune, R (proportion) or Z (number) 

• Assign parameters a unique (typically Greek) letter, eg: 
• Contact rate, κ 
• Pathogen infectivity, ν



Very important!
• NOTHING SPECIAL ABOUT MY CHOICE OF NOTATION – 

USE OF PARTICULAR LETTERS HIGHLY 
IDIOSYNCRATIC  

• OTHER AUTHORS MAY USE DIFFERENT LETTERS TO 
DENOTE SAME VARIABLES OR PARAMETERS. 

• YOU CANNOT AUTOMATICALLY ASSUME THAT β IN 
TWO DIFFERENT PAPERS MEANS THE SAME THING!



3. Model equations



Bath tub example
• Let W(t) be amount of water in 

bathtub (ml) 

• Need a dynamic equation that tells 
us how W(t) will change through 
time

Water outflow 
rate, O(t)

Water inflow 
rate, I(t)

Consider a small time interval, δt 

Then, 

W(t+ δt) = W(t) + Inflow rate × elapsed time - Outflow rate × elapsed time



Water outflow 
rate, O(t)

Water inflow 
rate, I(t)

Rearrange

W (t+ �t) = W (t) + I ⇥ �t�O ⇥ �t

W (t+ �t)�W (t)

�t
= I �O

Left hand side is a difference quotient for derivative of W 
with respect to time 

Let δt → 0
dW

dt
= I �O

Bath tub example



Many Linked bath tubs 
= compartment models



Model equations
• If we know Xt and Yt, we can predict Xt+δt and Yt+δt, 

where δt is some (very short) time later: 

 Xt+δt = Xt – Transmission 
 Yt+δt = Yt + Transmission

• Transmission rate 
per susceptible

∝ Contacts x P(Infectious) x P(Transmission)
= ⇥�t ⇥Yt

N
⇥⌫

= ⌫
Yt

N

= �
Yt

N
β=νκ



Model equations
• If we know Xt and Yt, we can predict Xt+δt and Yt+δt, 

where δt is some (very short) time later: 

 Xt+δt = Xt – Xt (β δt) Yt/N 
 Yt+δt = Yt + Xt (β δt) Yt/N - Recovery

• Recovery assumed at constant rate, Ɣ



Basic questions?

 Xt+δt = Xt – (β δt) Xt Yt/N 
 Yt+δt = Yt + (β δt) Xt Yt/N - (γ δt) Yt  
 Zt+δt = Zt + (γ δt) Yt  

•Average infectious period given by 1/γ [why?] 

β=νκ



Hence, probability density function is γe-γt

=
1

�

Recall: For random variable x, with probability density function f(x), mean is 
given by 

Z 1

0
xf(x)dx

I(t) = e��t

1 =

Z 1

o
ce��tdt =

c

�

Consider recovery of a single infectious individual:

Mean life time calculation



An ODE model
• Consider equation describing Susceptible dynamics 
 Xt+δt = Xt – (β δt) Xt Yt/N 

• Re-write as 
 Xt+δt - Xt = - (β δt) Xt  Yt/N 
 (Xt+δt – Xt)/ δt = - β Xt Yt/N 

By fundamental theorem of calculus, as δt → 0, 
 dX/dt = - β X Y/N



o By definition, X+Y+Z = N

o These equations describe rates of change in state variables

o Parameters β, γ represent instantaneous rates

dX

dt
= ��X

Y

N
dY

dt
= �X

Y

N
� �Y

dZ

dt
= �Y

An ODE SIR model



o These equations describe rates of change in state variables 
o Parameters β, γ represent instantaneous rates

dX

dt
= ��X

Y

N
dY

dt
= �X

Y

N
� �Y

dZ

dt
= �Y

In my lectures (as in K&R 2008), 
variables X, Y & Z refer to the 
numbers of individuals in each class. 
Variables S, I, & R refer to the 
proportions of the population in 
each class 

An ODE SIR model



dX

dt
= ��X

Y

N
dY

dt
= �X

Y

N
� �Y

dZ

dt
= �Y

Important to notice: transmission rate is assumed to depend on 
frequency of infecteds in population (Y/N).  Hence, this is 
frequency-dependent transmission

An ODE SIR model



Simulating epidemics
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Model dynamics

• As parameters are varied, model predicts 
different outcomes 

• Can we anticipate trajectories without 
resorting to numerical integration? 

• Question: under what conditions will an 
infectious disease invade a system?



The Invasion Threshold

• When can an infectious disease invade a population? 
• Initial conditions: X(0) = N, Y(0) = 1, Z(0) = 0 
• Invasion only if dY/dt > 0 
• ie,  βXY/N – γY > 0  ⇒ Y(βX/N - γ) > 0 

• If and only if X/N > γ/β 
• Since X=N, requires 1> γ/β 
• Or β/γ > 1

Kermack	&	McKendrick	(1927)



Basic Reproductive Ratio, R0
• Ratio β/γ gives number of cases before infected individual 

recovers 
• Universally referred to as R0 or Basic Reproductive Ratio  

• Definition: Number of secondary cases generated by a typical 
infected in an entirely susceptible population

R₀ < 1 

No invasion

R₀ =4 

Successful invasion



Infectious period (1/γ, days)
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R0 < 1

R0 and Model parameters



Estimates of R0
Hepatitis C 

Seasonal Influenza 

1918 Influenza 

Ebola 

SARS  

Phocine Distemper 

HIV (MSM) 

HIV (FSW) 

Mumps 

Pertussis

R0



The death of an epidemic
• SIR equations, let’s divide equation for dX/dt by dZ/dt: 
  dX/dZ = - (β X Y/N)/(γY) 
     = - R0 X/N 

• Integrate with respect to Z 
• X(t) = X(0) e –Z(t) R0/N 

• When epidemic is over, by definition, we have X(∞), Y(∞) 
(=0), and Z(∞) 

• X(∞) = N – Z(∞) = X(0) e –Z(∞) R0/N



The death of an epidemic
• So, N – Z(∞) - X(0) e –Z(∞) R0/N = 0 
• Solve this numerically (‘transcendental’ equation)

Epidemic	dies	out	because	
there	are	too	few	infectives,	
not	because	of	too	few	
susceptibles 

Kermack	&	McKendrick	(1927)



β 1/ɣ R₀

“Measles” 886 /yr 0.019 
yr 17

“Influenza” 180 /yr 0.011 
yr 2

“Chickenpox” 315 /yr 0.022 
yr 7

“Rubella” 200 /yr 0.025 
yr 5

Simple Epidemics



Frequency- or Density-Dependent 
Transmission?

• Assumed contact rate, κ, constant: ‘mixing’ is 
independent of population size: frequency-dependent 
transmission.  Reasonable? 

• If we assume contact rate to be κ’N (increases with 
‘crowding’), then transmission rate is 

dX/dt = -βXY 
• Called density-dependent transmission

Population Size
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 ra
te

κ′�N

κ



Does it Matter?
• Again, pathogen invasion if dY/dt > 0 
• If initially everyone susceptible (X=N),  

βNY – γY>0 ⇒ Y(βN - γ) > 0 
• In this case, we define R0 = βN/γ, so need R0>1 
  

• Hence, for any particular β and γ, there’s now a threshold 
population density required for invasion



Incorporating virulence

• Assume infectious individuals die at rate α
dY

dt
= . . .� �Y � ↵Y
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FD transmission → pathogen can wipe 
out host
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Transmission & R0



What should we do?
• If population size doesn’t change, FD & DD 

equivalent (βFD = N x βDD) 
• Otherwise: 

• Frequency-dependence generally more 
appropriate in large populations with 
heterogenous mixing, STDs, vector-borne 
pathogens 

• Density-dependence representative of wildlife & 
livestock diseases (especially with smaller 
population sizes)


