
Numerical solution of deterministic epidemiological models∗

John M. Drake & Pejman Rohani

1 Introduction

Many of the core theories of epidemic propagation are expressed is a system of ordinary differential
equations known as a compartmental model. This session introduces techniques for numerically solve
systems of nonlinear differential equations with an adaptive step size solver.

2 The SIR model

As we introduced in the lecture, the classical SIR compartmental model tracks the fraction of the
population in each of three classes (susceptible, infected, recovered). In a demographically closed system,
flow out of one class must enter another class, giving rise to a conservation property. The state variables
change according to the following system of differential equations:

dS

dt
= −βSI

dI

dt
= βSI − γ I

dR

dt
= γ I

where S, I, and R are the proportion of susceptible, infected, and recovered individuals and γ is the
recovery rate.

In a demographically open system, the number of individuals in the population may change due to births
and deaths that happen at per capita rates α and µ. The we have

dS

dt
= α− βSI − µS

dI

dt
= βSI − γ I − µ I

dR

dt
= γ I − µR

If we set α = µ then births exactly balance deaths and the population remains at a constant size, yielding

∗Licensed under the Creative Commons attribution-noncommercial license, http://creativecommons.org/licenses/by-
nc/3.0/. Please share and remix noncommercially, mentioning its origin.

1

dS

dt
= µ− βSI − µS

dI

dt
= βSI − γ I − µ I

dR

dt
= γ I − µR

.

Like many epidemiological models, one can’t solve the SIR equations analytically. Rather, to find the
trajectory of a continuous-time model such as the SIR, we integrate these equations numerically. What
we mean by this is that we use a computer algorithm to approximate the solution. In general, this can
be a tricky business. Fortunately, this is a well studied problem in numerical analysis and (when the
equations are smooth, well-behaved functions of a relatively small number of variables) standard numer-
ical integration schemes are available to approximate the integral with arbitrary precision. Particularly,
R has a very sophisticated ODE solver, which (for many problems) will give highly accurate solutions.
To use the numerical integration package, we must load the package

> require(deSolve) #deSolve library needed for this computing session

The ODE solver needs to know the right-hand sides of the ODE. We give it this information as a function
(sub-routine). Note that the form of the arguments and output of this function must exactly match what
is expected by the ode routine. Thus, for instance, the time variable t must be the first argument even
if the function is autonomous or time-invariant so that t is neglected in the calculation. Here we right
a function to return the derivatives of the closed SIR model.

> sir.model.closed <- function (t, x, params) { #here we begin a function with three arguments

+ S <- x[1] #create local variable S, the first element of x

+ I <- x[2] #create local variable I

+ R <- x[3] #create local variable R

+ with(#we can simplify code using "with"

+ as.list(params), #this argument to "with" lets us use the variable names

+ { #the system of rate equations

+ dS <- -beta*S*I

+ dI <- beta*S*I-gamma*I

+ dR <- gamma*I

+ dx <- c(dS,dI,dR) #combine results into a single vector dx

+ list(dx) #return result as a list

+ }

+)

+ }

Notice that here, we’ve assumed β is constant.

[Note: In case the with function is unfamiliar, it serves here to make the parameters params available
to the expressions in the brackets, as if they were variables. One could achieve the same effect by, for
example, dS <- params["mu"]*(1-S)-params["beta"]*S*I and so on.]

We now state the times at which we want solutions, assign some values to the parameters, and specify
the initial conditions, i.e., the values of the state variables S, I, and R at the beginning of the simulation:

> times <- seq(0,120,by=5) #function seq returns a sequence

> params <- c(beta=0.3,gamma=1/7) #function c "c"ombines values into a vector

> xstart <- c(S=9999/10000,I=1/10000,R=0) #initial conditions

2

Next, we simulate a model trajectory with the ode command:

> out <- as.data.frame(ode(xstart,times,sir.model.closed,params)) #result stored in dataframe

and plot the results

> op <- par(fig=c(0,0.5,0,1),mar=c(4,4,1,1)) #set graphical parameters

> plot(I~time,data=out,type='b') #plot the I variable against time

> par(fig=c(0.5,1,0,1),mar=c(4,1,1,1),new=T) #re-set graphical parameters

> plot(I~S,data=out,type='b',yaxt='n',xlab='S') #plot phase portrait

> par(op) #re-set graphical parameters

0 20 60 100

0.
00

0.
05

0.
10

0.
15

time

I

0.2 0.4 0.6 0.8 1.0

S

I

Exercise 1. Explore the dynamics of the system for different values of the β and γ parameters by
simulating and plotting trajectories as time series and in phase space (e.g., I vs. S).

3

Exercise 2. Explore the dynamics of the system for one set of β and γ at different initial conditions.
What happens if there is pre-existing immunity in the population?

Exercise 3. Modify the codes given to study the dynamics of a demographically open SIR model.

*Exercise 4. Modify the codes given to study the dynamics of an SEIR model.

4

