
Estimating R0: Solutions

John M. Drake and Pejman Rohani

Exercise 1. Show how this result could have been obtained graphically without the rearranged equation.

Here we use the influenza data discussed in the handout. First we load the data. The total number
infected was given to us as Z(∞) = 512. Given a population size of N = 764 we have the final epidemic
size, expressed as a fraction, as Z(∞)/N = 512/764 = 0.6701571.

> load('../data/data.RData') #load the data and plot flu cases

> Z <- 512/764

We also need the formula for the final epidemic size.

> final.size.estimator<-function(R0,final.size) 1-final.size-exp(-final.size*R0)

To solve the problem graphically we plot the final size estimator as a function of R0 (which ranges from
0 to 1). The R0 for this epidemic is the value of the x-axis at which the y=axis is zero. We draw a
horizontal line at y = 0 and a vertical line where this intersect the curve.

> x <- seq(0,3,by=0.01)

> y <- final.size.estimator(x,Z)

> plot(x, y, type='l', lwd=2, ylab='', xlab=expression(R[0]))

> abline(h=0, lty=2, lwd=2)

> abline(v=1.655, lty=2, lwd=2)

1

0.0 0.5 1.0 1.5 2.0 2.5 3.0

−
0.

6
−

0.
2

0.
0

0.
2

R0

Evidently, R0 is slightly greater than 1.5. This is consistent, of course, with our earlier calculation that
R0 ≈ 1.66.

Exercise 2. This equation shows the important one-to-one relationship between R0 and the final epi-
demic size. Plot the relationship between the total epidemic size and R0 for the complete range of values
between 0 and 1.

To solve this problem we first create a vector of total epidemic sizes from 0.001 to 0.999. (In the SIR
epidemic, only with R0 =∞ can we get an epidemic with final size of 100%.)

> epi.size <- seq(0.001, 0.999, by=0.001)

Here we loop over the values in this vector, using the formula R̂0 = log(1−Z/N)
−Z/N to get our estimate of

R0, and store the result in a vector.

> R0<-c()

> for(z in epi.size) R0 <- c(R0, log(1-z)/-z) #estimate R0

Now we plot the result.

> plot(epi.size, R0, type='l', xlab='Epidemic size')

2

0.0 0.2 0.4 0.6 0.8 1.0

1
2

3
4

5
6

7

Epidemic size

R
0

Exercise 3. Our estimate assumes that boys remained infectious during the natural course of infection.
The original report on this epidemic indicates that boys found to have syptoms were immediately confined
to bed in the infirmary. The report also indicates that only 1 out of 130 adults at the school exhibited
any symptoms. It is reasonable, then, to suppose that transmission in each case ceased once he had been
admitted to the infirmary. Supposing admission happened within 24 hours of the onset of symptoms.
How does this affect our estimate of R0? Twelve hours?

The formula to estimate R0 is R̂0 = β̂1/γ + 1. If individuals are quarantined, the realized removal rate
is greater than the natural recovery rate. Since the removal rate is in the denominator of the estimating
equation, using the natural recovery rate positively biases our estimate (it is too big). For quarantine in
24 hours (or one day), we have γ = 1 yielding R̂0 = 1.094913 + 1 ≈ 2.09. For qarantine in 12 hours (one
half day), we have infectious period of γ−1 = 0.5 implying γ = 2, yielding R̂0 = 1.094913/2 + 1 ≈ 1.55.

Exercise 4. Biweekly data for outbreaks of measles in three communities in Niamey, Niger are provided
in the dataframe niamey. Use this method to obtain estimates of R0 for measles from the first community
assuming that the infectious period is approximately two weeks or 14/365 ≈ 0.0384 years.

Here we follow the influnza example. First we plot the data with a logarithmic y-axis.

> plot(seq(0,15*2,by=2),niamey[,1],type='b',log='y',
+ main='Measles in Niamey, Niger', xlab='Week', ylab='Measles cases')

3

0 5 10 15 20 25 30

10
50

20
0

10
00

Measles in Niamey, Niger

Week

M
ea

sl
es

 c
as

es

Eye-balling this figure, the trajectory appears approximately linear on a log scale up to week 18. Since
the data are reported in two-week intervals, this is the tenth observation. Here we fit the linear model.

> model<-lm(log(niamey[1:10,1])~seq(0,18,by=2))

> summary(model) #summary statistics for fit model

Call:

lm(formula = log(niamey[1:10, 1]) ~ seq(0, 18, by = 2))

Residuals:

Min 1Q Median 3Q Max

-0.51796 -0.07364 0.00790 0.10727 0.36805

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.03600 0.15111 20.09 3.93e-08 ***

seq(0, 18, by = 2) 0.21960 0.01415 15.52 2.96e-07 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.2571 on 8 degrees of freedom

Multiple R-squared: 0.9678, Adjusted R-squared: 0.9638

F-statistic: 240.8 on 1 and 8 DF, p-value: 2.963e-07

> slope<-coef(model)[2] #extract slope parameter

> slope #print to screen

4

seq(0, 18, by = 2)

0.2196041

Expressing the removal rate in units of weeks, we have γ = 0.5. Substituting into our estimating formula,
we have R̂0 = 0.2196/0.5 + 1 ≈ 1.44

Exercise 5. A defect with this method is that it uses only a small fraction of the information that might
be available, i.e., the first few data points. Indeed, there is nothing in the method that tells one how
many data points to use–this is a matter of judgment. Further, there is a tradeoff in that as more and
more data points are used the precision of the estimate increases, but this comes at a cost of additional
bias. Plot the estimate of R0 obtained from n = 3, 4, 5, ... data points against the standard error of the
slope from the regression analysis to show this tradeoff.

To solve this problem we embed the regression approach used in the previous example in a for loop and
extract the slope parameter and standard error. We calculate the desired estimate of R0 after the loop
as in the exercise above and plot.

> slope <- NULL

> se <- NULL

> for(i in 3:18){

+ model<-lm(log(niamey[1:i,1])~seq(0,(i-1)*2,by=2))

+ slope<-c(slope,as.numeric(coef(model)[2]))

+ se <- c(se, summary(model)$coefficients[4])

+ }

> R0 <- slope/0.5 + 1

> plot(R0, se, ylab='Standard error')

1.1 1.2 1.3 1.4 1.5

0.
02

0.
04

0.
06

0.
08

R0

S
ta

nd
ar

d
er

ro
r

5

Exercise 6. To make things easier, we have assumed the infectious period is known to be 13 days. In
terms of years, γ = (365/13)−1 ≈ 0.0357. Now, modify the code above to estimate γ and β simultane-
ously.

To solve this problem we first plot the data.

> niamey[5,3]<-0 #replace a "NA"

> niamey<-data.frame(biweek=rep(seq(1,16),3),site=c(rep(1,16),rep(2,16),rep(3,16)), cases=c(niamey[,1],niamey[,2],niamey[,3])) #define "biweeks"

> plot(niamey$biweek,niamey$cases,type='p',col=niamey$site,xlab='Biweek',ylab='Cases')
> lines(niamey$biweek[niamey$site==1],niamey$cases[niamey$site==1])

> lines(niamey$biweek[niamey$site==2],niamey$cases[niamey$site==2],col=2)

> lines(niamey$biweek[niamey$site==3],niamey$cases[niamey$site==3],col=3)

Next we set up a version of the closed SIR model in which both β and γ are passed as parameters and a
function to calculate the sum of squared errors obtained by comparing a model solution to the observed
data.

> closed.sir.model <- function (t, x, params) { #SIR model equations

+ S <- x[1]

+ I <- x[2]

+ b <- params[1]

+ gamma <- params[2]

+ # gamma = log(13/365)

+ dS <- -b*S*I

+ dI <- b*S*I-gamma*I

+ list(c(dS,dI))

+ }

> sse.sir <- function(params0,data,site){ #function to calculate squared errors

+ data<-data[data$site==site,] #working dataset, based on site

+ t <- data[,1]*14/365 #time in biweeks

+ cases <- data[,3] #number of cases

+ b <- exp(params0[1]) #parameter beta

+ S0 <- exp(params0[2]) #initial susceptibles

+ I0 <- exp(params0[3]) #initial infected

+ gamma <- exp(params0[4])

+ out <- as.data.frame(lsoda(c(S=S0,I=I0),times=t,closed.sir.model,parms=c(b=b, gamma=gamma),hmax=1/120))

+ sse<-sum((out$I-cases)^2) #sum of squared errors

+ }

As in our earlier exercise, solving the differential equations will require the package deSolve.

> require(deSolve) #differential equation library

Now we imitate the exercise with a guess at the initial parmeters, fit, and optimization using optim.
Our question is answered by returning the estimates of β and γ.

> params0<-c(-3.2,7.3,-2.6, log(13/365)) #initial guess

> fit1 <- optim(params0,sse.sir,data=niamey,site=1, hessian=TRUE) #fit

> exp(fit1$par) #back-transform parameters

6

[1] 4.270174e-03 1.306079e+04 3.109724e+00 3.514039e+01

> fit2 <- optim(params0,sse.sir,data=niamey,site=2) #fit

> exp(fit2$par) #back-transform parameters

[1] 6.079919e-02 1.392372e+03 1.418267e-08 8.256003e+00

> fit3 <- optim(params0,sse.sir,data=niamey,site=3) #fit

> exp(fit3$par) #back-transform parameters

[1] 4.857679e-02 1.329556e+03 5.226157e-03 3.555167e+01

Finally, we plot the fit model against the data.

> par(mfrow=c(2,2)) #set up plotting area for multiple panels

> plot(cases~biweek,data=subset(niamey,site==1),type='p',pch=21) #plot site 1

> t <- subset(niamey,site==1)[,1]*14/365

> mod.pred<-as.data.frame(lsoda(c(S=exp(fit1$par[2]),I=exp(fit1$par[3])),times=t,

+ closed.sir.model,c(exp(fit1$par[1]),exp(fit1$par[4])),hmax=1/120))

> #obtain model predictions

> lines(mod.pred$I~subset(niamey,site==1)[,1]) #and plot as a line

> plot(cases~biweek,data=subset(niamey,site==2),type='b',col=site) #site 2

> t <- subset(niamey,site==2)[,1]*14/365

> mod.pred<-as.data.frame(lsoda(c(S=exp(fit2$par[2]),I=exp(fit2$par[3])),times=t,

+ closed.sir.model,c(exp(fit2$par[1]),exp(fit2$par[4])),hmax=1/120))

> lines(mod.pred$I~subset(niamey,site==2)[,1])

> plot(cases~biweek,data=subset(niamey,site==3),type='b',col=site) #site 3

> t <- subset(niamey,site==3)[,1]*14/365

> mod.pred<-as.data.frame(lsoda(c(S=exp(fit3$par[2]),I=exp(fit3$par[3])),times=t,

+ closed.sir.model,c(exp(fit3$par[1]),exp(fit3$par[4])),hmax=1/120))

> lines(mod.pred$I~subset(niamey,site==3)[,1])

7

5 10 15

0
40

0
80

0

biweek

ca
se

s

5 10 15

0
20

0
60

0

biweek

ca
se

s

5 10 15

0
50

10
0

15
0

biweek

ca
se

s

Exercise 7. What happens if one or both of the other unknowns (I0 and S0) is fixed instead of γ?

Here we let I0 be an unknown parameter and we fit it instead of γ.

As before, we write a function to return the derivatives of the closed SIR epidemic. Notice that
closed.sir.model treats I as a state variable, but sse.sir treats I0 as an unknown parameter to
be fitted.

> closed.sir.model <- function (t, x, params) { #SIR model equations

+ S <- x[1]

+ I <- x[2]

+ b <- params[1]

+ gamma <- params[2]

+ # gamma = log(13/365)

+ dS <- -b*S*I

+ dI <- b*S*I-gamma*I

8

+ list(c(dS,dI))

+ }

> sse.sir <- function(params0,data,site){ #function to calculate squared errors

+ data<-data[data$site==site,] #working dataset, based on site

+ t <- data[,1]*14/365 #time in biweeks

+ cases <- data[,3] #number of cases

+ b <- exp(params0[1]) #parameter beta

+ S0 <- 12500 #initial susceptibles

+ I0 <- exp(params0[2]) #initial infected

+ gamma <- exp(params0[3])

+ out <- as.data.frame(lsoda(c(S=S0,I=I0),

+ times=t,

+ closed.sir.model,

+ parms=c(b=b, gamma=gamma),

+ hmax=1/120))

+ sse<-sum((out$I-cases)^2) #sum of squared errors

+ }

As above, we proceed with an initial guess at parameters and use optim to fit the model.

> params0<-c(-3.2,-2.6, log(13/365)) #initial guess

> fit1 <- optim(params0,sse.sir,data=niamey,site=1) #fit

> exp(fit1$par) #back-transform parameters

[1] 0.004440909 2.802295901 34.568270916

> fit2 <- optim(params0,sse.sir,data=niamey,site=2) #fit

> exp(fit2$par) #back-transform parameters

[1] 1.932654e-01 1.176771e-04 5.053424e+02

> fit3 <- optim(params0,sse.sir,data=niamey,site=3) #fit

> exp(fit3$par) #back-transform parameters

[1] 3.628534e-01 6.102647e-07 3.073515e+05

9

