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1 Estimating R0

So far in this class we have focused on the theory of infectious disease. Often, however, we will want to
apply this theory to particular situations. One of the key applied problems in epidemic modeling is the
estimation of R0 from outbreak data. In this session, we study two methods for estimating R0 from an
epidemic curve. As a running example, we will use the data on influenza in a British boarding school.

> load('../data/data.RData')
> plot(flu,type='b',log='y',main='Epidemic in a British boarding school', cex.main=0.85,

+ xlab='Day', ylab='Active influenza cases')
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∗Licensed under the Creative Commons attribution-noncommercial license, http://creativecommons.org/licenses/by-
nc/3.0/. Please share and remix noncommercially, mentioning its origin.
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2 Estimating R0 from the final outbreak size

Our first approach is to estimate R0 from the final outbreak size. Although unhelpful at the early stages
of an epidemic (before the final epidemic size is observed), this method is nonetheless a useful tool for
post hoc analysis. The method is general and can be motivated by the following argument (Keeling
and Rohani 2007): First, we assume that the epidemic is started by a single infectious individual in
a completely susceptible population. On average, this individual infects R0 others. The probability
a particular individual escaped infection is therefore e−R0/N . If Z individuals have been infected, the
probablility of an individual escaping infection from all potential sources is e−ZR0/N . It follows that
at the end of the epidemic a proportion R(∞) = Z/N have been infected and the fraction remaining
susceptible is S(∞) = e−R(∞)R0 , which is equal to 1−R(∞), giving

1−R(∞)− e−R(∞)R0 = 0 (1)

Rearranging, we have the estimator

R̂0 =
log(1− Z/N)

−Z/N
, (2)

which, in this case, evaluates to log(1−512/764)
−512/764 = 1.655.

Exercise 1. This equation shows the important one-to-one relationship between R0 and the final epi-
demic size. Plot the relationship between the total epidemic size and R0 for the complete range of values
between 0 and 1.

3 Linear approximation

The next method we introduce takes advantage of the fact that during the early stages of an outbreak,
the number of infected individuals is given approximately as Y (t) ≈ Y0e((R0−1)(γ+µ)t). Taking logarithms
of both sides, we have log(Y (t)) ≈ log(Y0) + (R0 − 1)(γ + µ)t, showing that the log of the number of
infected individuals is approximately linear in time with a slope that reflects both R0 and the recovery
rate.

This suggests that a simple linear regression fit to the first several data points on a log-scale, corrected
to account for γ and µ, provides a rough and ready estimate of R0. For flu, we can assume µ = 0
because the epidemic occurred over a time period during which natural mortality is negligible. Further,
assuming an infectious period of about 2.5 days, we use γ = (2.5)−1 = 0.4 for the correction. Fitting to
the first four data points, we obtain the slope as follows.

> model<-lm(log(flu[1:4])~day[1:4],data=flu); #fit a linear model

> summary(model) #summary statistics for fit model

Call:

lm(formula = log(flu[1:4]) ~ day[1:4], data = flu)

Residuals:

1 2 3 4

0.03073 -0.08335 0.07450 -0.02188
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Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.02703 0.10218 -0.265 0.81611

day[1:4] 1.09491 0.03731 29.346 0.00116 **

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.08343 on 2 degrees of freedom

Multiple R-squared: 0.9977, Adjusted R-squared: 0.9965

F-statistic: 861.2 on 1 and 2 DF, p-value: 0.001159

> slope<-coef(model)[2] #extract slope parameter

> slope #print to screen

day[1:4]

1.094913

Rearranging the linear equation above and denoting the slope coefficient by β̂1 we have the estimator
R̂0 = β̂1/γ + 1 giving R̂0 = 1.094913/0.4 + 1 ≈ 3.7.

Exercise 2. Our estimate assumes that boys remained infectious during the natural course of infection.
The original report on this epidemic indicates that boys found to have syptoms were immediately confined
to bed in the infirmary. The report also indicates that only 1 out of 130 adults at the school exhibited
any symptoms. It is reasonable, then, to suppose that transmission in each case ceased once he had been
admitted to the infirmary. Supposing admission happened within 24 hours of the onset of symptoms.
How does this affect our estimate of R0? Twelve hours?

Exercise 3. Biweekly data for outbreaks of measles in three communities in Niamey, Niger are provided
in the dataframe niamey. Use this method to obtain estimates of R0 for measles from the first community
assuming that the infectious period is approximately two weeks or 14/365 ≈ 0.0384 years.

Exercise 4. A defect with this method is that it uses only a small fraction of the information that might
be available, i.e., the first few data points. Indeed, there is nothing in the method that tells one how
many data points to use–this is a matter of judgment. Further, there is a tradeoff in that as more and
more data points are used the precision of the estimate increases, but this comes at a cost of additional
bias. Plot the estimate of R0 obtained from n = 3, 4, 5, ... data points against the standard error of the
slope from the regression analysis to show this tradeoff.

4 Estimating dynamical parameters with least squares

The objective of the previous exercise was to estimate R0. Knowing R0 is critical to understanding the
dynamics of any epidemic system. It is, however, a composite quantity and is not sufficient to completely
describe the epidemic trajectory. For this, we require estimates for all parameters of the model. In this
exercise, we introduce a simple approach to model estimation called least squares fitting, sometimes called
trajectory matching. The basic idea is that we find the values of the model parameters that minimize
the squared differences between model predictions and the observed data. To demonstrate least squares
fitting, we consider an outbreak of measles in Niamey, Niger, reported on by Grais et al. 2006 (Grais,
R.F., et al. 2006. Estimating transmission intensity for a measles outbreak in Niamey, Niger: lessons
for intervention. Transactions of the Royal Society of Tropical Medicine and Hygiene 100:867-873.).

> load('../data/data.RData')
> niamey[5,3]<-0 #replace a "NA"
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> niamey<-data.frame(biweek=rep(seq(1,16),3),site=c(rep(1,16),rep(2,16),rep(3,16)),

+ cases=c(niamey[,1],niamey[,2],niamey[,3])) #define "biweeks"

> plot(niamey$biweek,niamey$cases,type='p',col=niamey$site,xlab='Biweek',ylab='Cases')
> lines(niamey$biweek[niamey$site==1],niamey$cases[niamey$site==1])

> lines(niamey$biweek[niamey$site==2],niamey$cases[niamey$site==2],col=2)

> lines(niamey$biweek[niamey$site==3],niamey$cases[niamey$site==3],col=3)
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5 Dynamical model

First, we write a specialized function for simulating the SIR model in a case where the removal rate is
“hard-wired” and with no demography.

> closed.sir.model <- function (t, x, params) { #SIR model equations

+ X <- x[1]

+ Y <- x[2]

+ beta <- params

+ dX <- -beta*X*Y
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+ dY <- beta*X*Y-(365/13)*Y

+ list(c(dX,dY))

+ }

6 Objective function

Now we set up a function that will calculate the sum of the squared differences between the observations
and the model at any parameterization (more commonly known as “sum of squared errors”). In general,
this is called the objective function because it is the quantity that optimization seeks to minimize.

> sse.sir <- function(params0,data,site){ #function to calculate squared errors

+ data<-data[data$site==site,] #working dataset, based on site

+ t <- data[,1]*14/365 #time in biweeks

+ cases <- data[,3] #number of cases

+ beta <- exp(params0[1]) #parameter beta

+ X0 <- exp(params0[2]) #initial susceptibles

+ Y0 <- exp(params0[3]) #initial infected

+ out <- as.data.frame(ode(c(X=X0,Y=Y0),times=t,closed.sir.model,beta,hmax=1/120))

+ sse<-sum((out$Y-cases)^2) #sum of squared errors

+ }

>

Notice that the code for sse.sir makes use of the following modeling trick. We know that β, X0, and
Y0 must be positive, but our search to optimize these parameters will be over the entire number line. We
could constrain the search using a more sophisticated algorithm, but this might introduce other problems
(i.e., stability at the boundaries). Instead, we parameterize our objective function (sse.sir) in terms
of some alternatve variables log(β), log(X0), and log(Y0). While these numbers range from −∞ to ∞
(the range of our search) they map to our model parameters on a range from 0 to ∞ (the range that is
biologically meaningful).

7 Optimization

Our final step is to use the function optim to find the values of β, X0, and Y0 that minimize the sum of
squared errors as calculated using our function.

> library(deSolve) #differential equation library

> params0<-c(-3.2,7.3,-2.6) #initial guess

> fit1 <- optim(params0,sse.sir,data=niamey,site=1) #fit

> exp(fit1$par) #back-transform parameters

[1] 5.463181e-03 9.110385e+03 2.331841e+00

> fit2 <- optim(params0,sse.sir,data=niamey,site=2) #fit

> exp(fit2$par) #back-transform parameters

[1] 8.666138e-03 6.276503e+03 2.843753e-01
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> fit3 <- optim(params0,sse.sir,data=niamey,site=3) #fit

> exp(fit3$par) #back-transform parameters

[1] 7.130417e-02 8.625791e+02 1.031319e-03

Finally, we plot these fits against the data.

> par(mfrow=c(3,1)) #set up plotting area for multiple panels

> plot(cases~biweek,data=subset(niamey,site==1),type='b',col='blue', pch=21) #plot site 1

> t <- subset(niamey,site==1)[,1]*14/365

> mod.pred<-as.data.frame(ode(c(X=exp(fit1$par[2]),Y=exp(fit1$par[3])),times=t,

+ closed.sir.model,exp(fit1$par[1]),hmax=1/120))

> #obtain model predictions

> lines(mod.pred$Y~subset(niamey,site==1)[,1]) #and plot as a line

> plot(cases~biweek,data=subset(niamey,site==2),type='b',col=site) #site 2

> t <- subset(niamey,site==2)[,1]*14/365

> mod.pred<-as.data.frame(ode(c(X=exp(fit2$par[2]),Y=exp(fit2$par[3])),times=t,

+ closed.sir.model,exp(fit2$par[1]),hmax=1/120))

> lines(mod.pred$Y~subset(niamey,site==2)[,1])

> plot(cases~biweek,data=subset(niamey,site==3),type='b',col=site) #site 3

> t <- subset(niamey,site==3)[,1]*14/365

> mod.pred<-as.data.frame(ode(c(X=exp(fit3$par[2]),Y=exp(fit3$par[3])),times=t,

+ closed.sir.model,exp(fit3$par[1]),hmax=1/120))

> lines(mod.pred$Y~subset(niamey,site==3)[,1])

>
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Exercise 5. To make things easier, we have assumed the infectious period is known to be 14 days. In
terms of years, γ = (365/14)−1 ≈ 0.0384. Now, modify the code above to estimate γ and β simultane-
ously.

Exercise 6. What happens if one or both of the other unknowns (X0 and Y0) is fixed instead of γ?
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