Infectious Disease Management

Insights from simple models

The Anatomy of an Epidemic

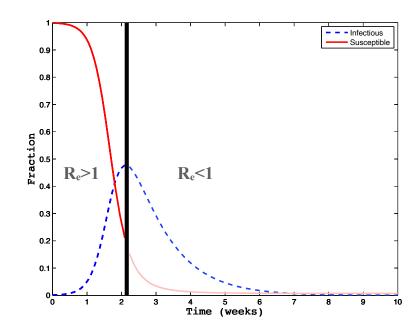
Initially, exponential growth (proportional to R_0 , specifically $\gamma(R_0-1)$)

But, depletes susceptibles, so R_0 no longer useful

Instead, define effective value of R₀ (call it R_e)

 R_e scales with proportion of susceptibles in population (S=X/N), ie $R_e = R_0S$

when R_e<1, each infectious individual infects fewer than one new person, breaking transmission chain



Vaccination

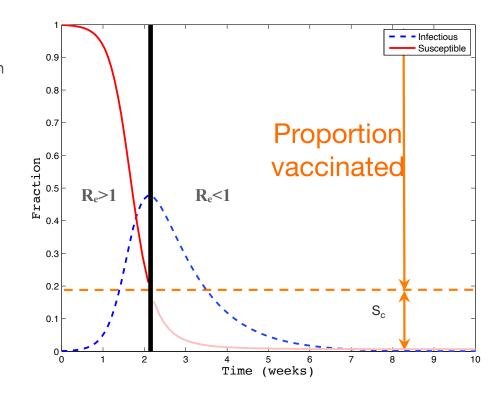
If, by vaccination, we can reduce proportion of susceptibles below a <u>critical level</u>, S_c , then R_e <1 and infection cannot invade

Recall:
$$R_e = R_0 X/N$$

So, $S_c=1/\mathbf{R_0}$ represents $R_e=1$ and will achieve our goal

So, critical vaccination proportion to eradicate is

$$p_c = 1 - S_c = 1 - 1/R_0$$



Mathematically ...

• Consider rate of change of invectives:

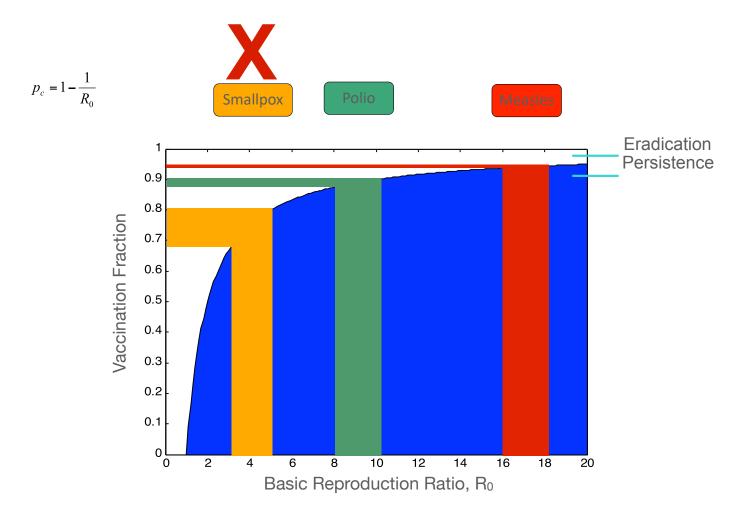
$$\frac{dY}{dt} = \beta X \frac{Y}{N} - \gamma Y$$

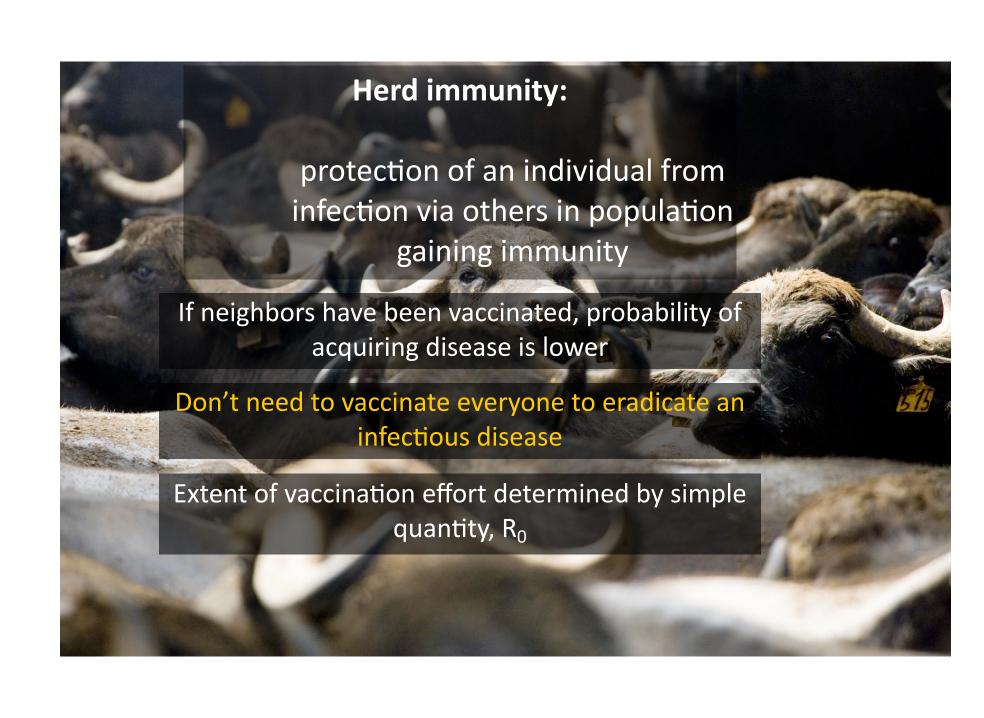
Hence, preventing initial spread (dY/dt <0) requires

$$\beta \frac{X}{N} < \gamma$$

$$\implies \frac{X}{N} < \frac{\gamma}{\beta} = \frac{1}{R_0}$$

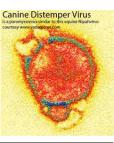
Eradication Criterion





1. Random Immunization

- Consider wildlife diseases
- Or a pandemic!
- Pragmatically, will need continuous vaccination instead



"Random immunization"

• After some algebra:

$$I^* = \frac{\mu}{\beta} \left(R_0 - 1 - \frac{\rho}{\mu} \right)$$

- Eradication → I*=0
- Requires $\rho \ge \mu (R_0 1)$

$$\frac{dS}{dt} = \mu - \beta SI - \mu S - \rho S$$

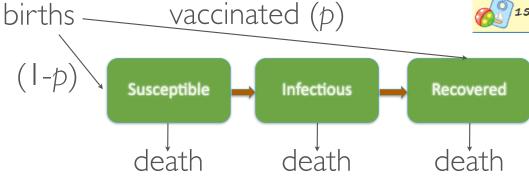
$$\frac{dI}{dt} = \beta SI - (\mu + \gamma)I$$

$$\frac{dR}{dt} = \rho S + \gamma I - \mu R$$

- This is rate of susceptibles to be immunized for (eventual) control
- What does criterion tell us, biologically?

2. "Paediatric immunization"

- Familiar with infant immunization
- Generally treated as fraction, p, of newborns vaccinated



2. "Paediatric immunization"

Model this (as one time event)

$$\frac{dS}{dt} = \mu(1-p) - \beta SI - \mu S$$

$$\frac{dI}{dt} = \beta SI - (\mu + \gamma)I$$

$$\frac{dR}{dt} = \mu p + \gamma I - \mu R$$

- Now what?
- Let's derive expression for I*

"Paediatric immunization"

• After some algebra:

$$I^* = \frac{\mu}{\beta} \left(R_0 (1 - p) - 1 \right)$$

- Eradication implies I*=0
- Requires $p = 1 1/R_0$

$$\frac{dS}{dt} = \mu(1-p) - \beta SI - \mu S$$

$$\frac{dI}{dt} = \beta SI - (\mu + \gamma)I$$

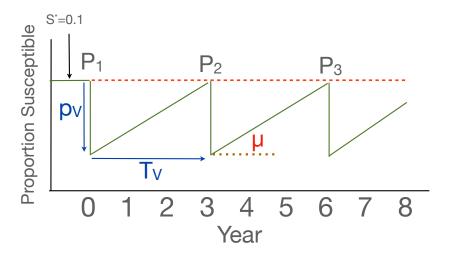
$$\frac{dR}{dt} = \mu p + \gamma I - \mu R$$

 This is fraction of newborns to be immunized for (eventual) control

3. "Pulsed" Vaccination

- Routine infant & Continuous vaccination schemes require sound infrastructure for vaccine delivery
 - may be challenging in many settings
- Alternative, perhaps more economic and logistically efficient strategy may be pulsed vaccination: immunize specific age cohorts at specified intervals

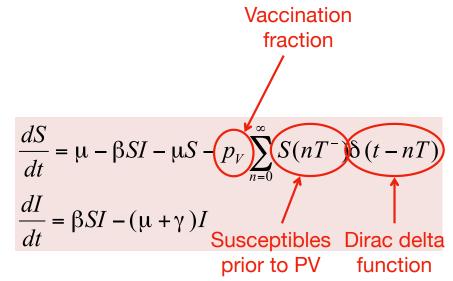
Pulsed Vaccination



- -Assume $R_0 = 10$
- $-p_V = 60\%$ and per capita annual birth rate = 2%
- For dI/dt<0, need to ensure S<1/10
- After any pulse, S = 1/10 * 0.4 = 0.04
- Since μ =0.02, it'll take 3 years for S to reach 0.1
- -So, pulse period = 3 yrs

More formally ...

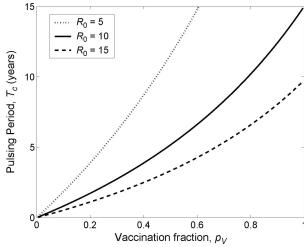
• For an SIR model:



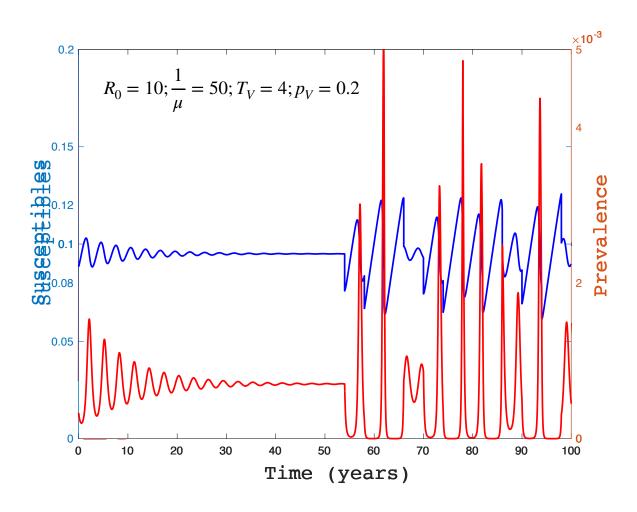
• Shulgin et al. (1998; Bull Math Biol): Linear stability analysis reveals

eradication criterion

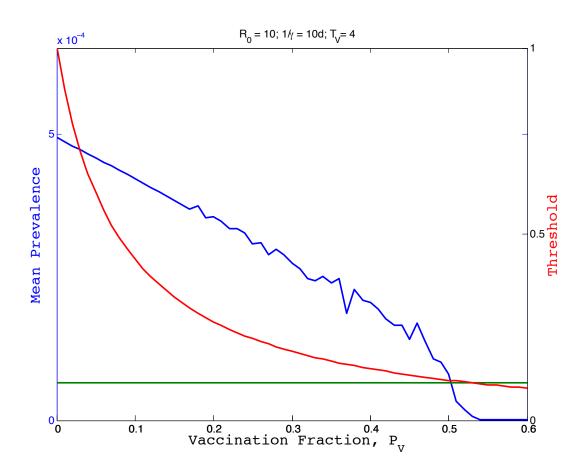
$$\frac{(\mu T - p_V)(e^{\mu T} - 1) + \mu p_V T}{\mu T (p_V - 1 + e^{\mu T})} < \frac{1}{R_0}$$



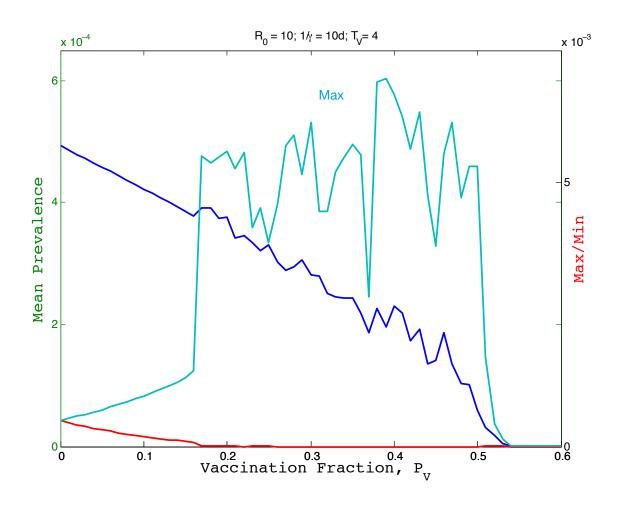
Pulsed Vaccination in Action!



Programming:

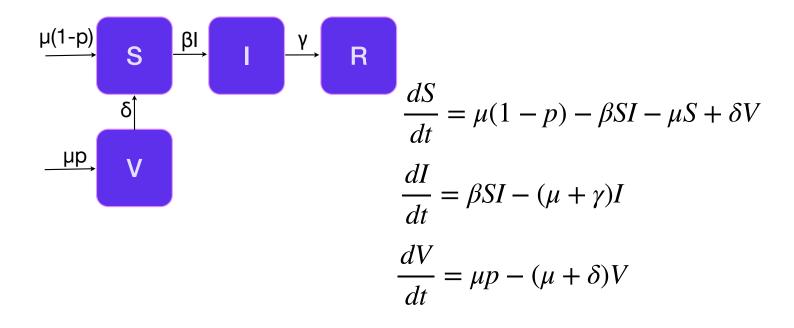


Programming Challenge:



Aside: Imperfect Vaccines

• What if –as is at times the case– immunity derived from a vaccine wanes over time?



Aside: Imperfect Vaccines

• What if –as is at times the case– immunity derived from a vaccine wanes

over time?

$$\frac{dS}{dt} = \mu(1-p) - \beta SI - \mu S + \delta V$$

$$\frac{dI}{dt} = \beta SI - (\mu + \gamma)I$$

$$\frac{dV}{dt} = \mu p - (\mu + \delta)V$$

Eradication requires (Check this)

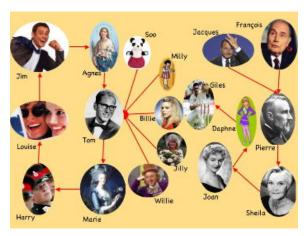
$$p = \left(1 - \frac{1}{R_0}\right) \left(1 + \frac{\delta}{\mu}\right)$$

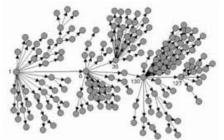


Eradication will require boosters

4. Non-Pharmaceutical Interventions

- "Social distancing"
- Isolation and quarantining
- We should also find (or trace) their contacts





Background

Pandemic planning

Consider emerging pathogen

Everyone susceptible

No pharmaceutical defense (drugs/vaccines)

Only Non-Pharmaceutical Interventions would work

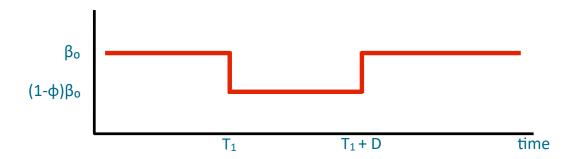
Social distancing

How long?

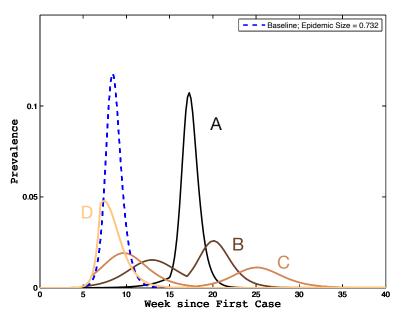
What extent?

Protocol

- Basic reproduction ratio $R_0 = 1.8$
- Recovery rate $\gamma = 1/2.6 \text{ day}^{-1}$
 - Generation time 2.6 days
- Baseline transmission rate $\beta_0 = R_0 \gamma$
- Population size n = 58.1 million (UK)

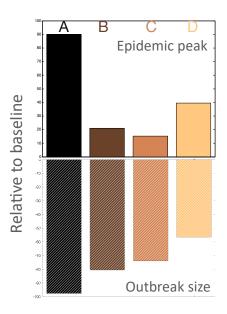


Intervention D=12 weeks

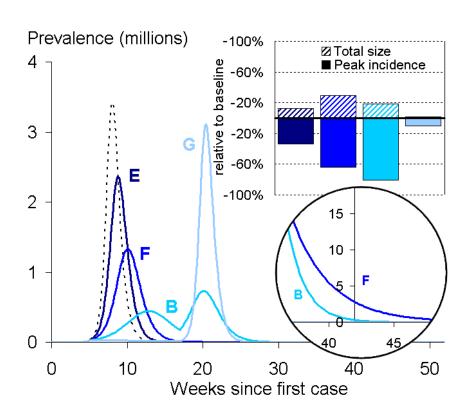


Intervention $\phi = 0.333$ Start (week)

- A: $T_1 = 3$
- B: $T_1 = 5$
- C: $T_1 = 6$
- D: $T_1 = 7$



Intervention D=12 weeks



- Start (week) $T_1 = 5$
- Intervention

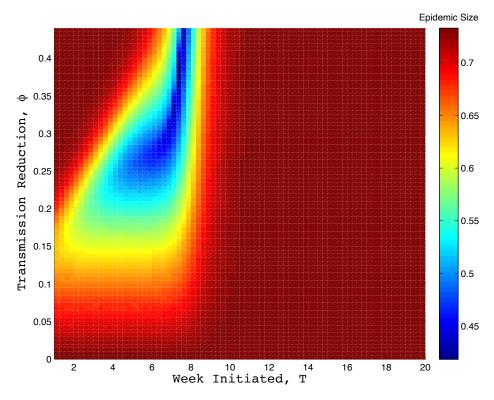
E: $\phi = 0.111$

F: $\phi = 0.222$

B: $\phi = 0.333$

G: $\phi = 0.444$

Intervention D=12 weeks



Depending on aims of control, efforts that are too early or too severe may be counter-productive

Modeling NPI

Assume average contact rate, κ

Transmission probability, ν

Infectious individuals immediately symptomatic

Infectious isolated at rate d₁

Fraction q of contacts with infectious quarantined

Kept in quarantine for average $\tau_{\rm Q}$

Modeling NPIs

Contact, transmission Contact, no transmission, quarantine

Released quarantine

Susceptible

 $\frac{dS}{dt} = -\left(\kappa\nu\right) \left(q\kappa(1-\nu)\right)SI + \tau_Q S_Q$

Contact, transmission, not traced

Susceptible in quarantine

 $\frac{dS_Q}{dt} = q\kappa(1 - \nu)SI - \tau_Q S_Q$

Isolation

Infectious

 $\frac{dI}{dt} = \kappa \nu (1 - q) I - d_I I - \gamma I$

Contact, transmission, traced

Infectious in quarantine

Recovered

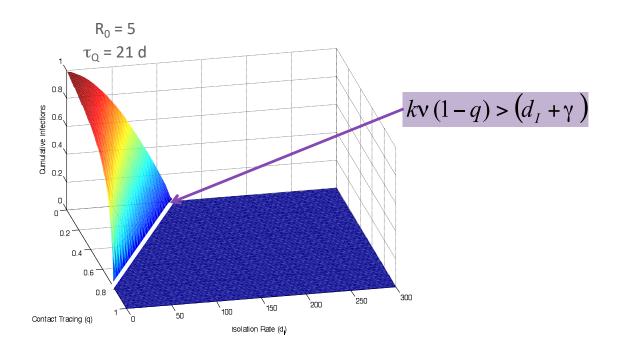
$$\frac{dQ}{dt} = \kappa \nu q S I + d_I I - \tau_Q I$$

$$\frac{dR}{dt} = \tau_Q Q + \gamma I$$

What does it tell us?

Can show control requires

$$S < \frac{\left(d_I + \gamma\right)}{k\nu\left(1 - q\right)}$$



Yes, but ...

Key realities we've ignored:

- 1. Assumed infectious individuals immediately symptomatic (often, clinical presentation a few days after infectiousness, eg SARS)
- 2. Uncertainties & delays in identifying and isolating potential contacts

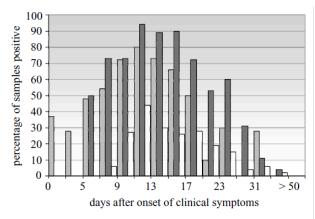
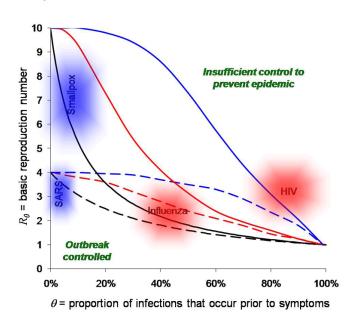


Figure 4. Studies of viral shedding in SARS patients on various days following the onset of clinical symptoms, in stool (dark-grey bars), urine (white bars) and nasopharangeal aspirate (light-grey bars) (Peiris *et al.* 2003*a*).

Yes, but ...

Fraser et al. (2004; PNAS) examined 'controllability' of an infectious disease, based on its epidemiology and pathogenesis

Infectious disease with much 'silent' transmission are harder to control this way



Yes, another but ...

Back to our NPI example:

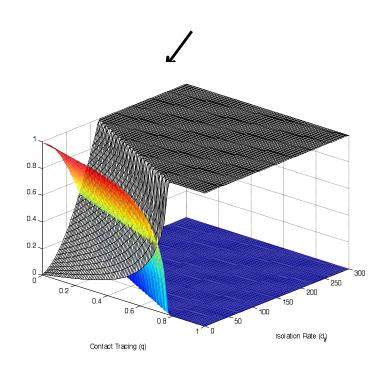
If contact tracing and quarantining efficient enough, invasion can be controlled

But ...

Let's consider remaining susceptible population, post-control

NPI measures leave population vulnerable to re-exposure

Fraction susceptible after outbreak



Lecture Summary ...

- Models can generate predictions about immunization levels required for eradication
- Similarly, extent of non-pharmaceutical interventions can be gauged
- NPIs leave many susceptibles behind
 - Important for re-introductions
- Infections with much silent transmission very difficult to control with NPIs