Heterogeneity in Contacts

Behaviour & Age

Realism Vs Transparency

Sources of Heterogeneity in Contacts

Individual exposure and infection hazard may be heterogeneous for a number reasons:

- I. Risk structure
 - Determined by behavioural patterns
 - Or related to occupation
- 2. Age-determined contacts
 - Childhood diseases
- 3. Seasonality
 - Time-dependent contact rates

Simple contact heterogeneities

Contact tracing to examine HIV transmission network in Colorado Springs:

More Generally

Modeling Risk Structure

Introduce a model consisting of individuals whose behaviour/work places them in one of two *kinds* of groups: <u>Low</u> risk and <u>High</u> risk

Extend simple SIS model

$$\begin{aligned} \frac{dS_L}{dt} &= \gamma_L I_L - \beta_{LL} S_L I_L - \beta_{LH} S_L I_H \\ \frac{dI_L}{dt} &= -\gamma_L I_L + \beta_{LL} S_L I_L + \beta_{LH} S_L I_H \\ \frac{dS_H}{dt} &= \gamma_H I_H - \beta_{HH} S_H I_H - \beta_{HL} S_H I_L \\ \frac{dI_H}{dt} &= -\gamma_H I_H + \beta_{HH} S_H I_H + \beta_{HL} S_H I_L \end{aligned}$$

What's R₀?

Instead of a single transmission rate (β), we now have a matrix of transmission parameters (β)

$$\begin{pmatrix} \beta_{HH} & \beta_{HL} \\ \beta_{LH} & \beta_{LL} \end{pmatrix}$$

- This is called WAIFW (Who Acquires Infection From Whom) matrix
- Typically, it's assumed $\beta_{LH} = \beta_{HL}$
- And high assortativity, such that $\beta_{HH} > \beta_{LL} > \beta_{HL}$

What's R₀?

At disease-free equilibrium

$$(S_H^*, I_H^*, S_L^*, I_L^*) = (1, 0, 1, 0)$$

- \mathcal{F} = new infections
- $\mathcal{F}_{H} = \beta_{HH} S_{H}I_{H} + \beta_{HL} S_{H}I_{L}$

- \mathcal{V} = pathogen progression
- $\mathcal{V}_{H} = \gamma_{H}I_{H}$
- $\mathcal{F}_{L} = \beta_{LL} S_{L}I_{L} + \beta_{LH} S_{L}I_{H}$ $\mathcal{V}_{L} = \gamma_{L}I_{L}$

$$F = \begin{pmatrix} \beta_{HH} S_1^* & \beta_{HL} S_1^* \\ \beta_{HL} S_2^* & \beta_{LL} S_2^* \end{pmatrix} = \begin{pmatrix} \beta_{HH} & \beta_{HL} \\ \beta_{HL} & \beta_{LL} \end{pmatrix} \qquad V = \begin{pmatrix} \gamma_H & 0 \\ 0 & \gamma_L \end{pmatrix}$$

Diekmann et al. (1990; J Math Biol.)

What's R₀?

Next generation operator, K, given by

$$FV^{-1} = \begin{pmatrix} \beta_{HH} & \beta_{HL} \\ \beta_{HL} & \beta_{LL} \end{pmatrix} \begin{pmatrix} \frac{1}{\gamma_H} & 0 \\ 0 & \frac{1}{\gamma_L} \end{pmatrix}$$

$$K = FV^{-1} = \begin{pmatrix} \frac{\beta_{HH}}{\gamma_{H}} & \frac{\beta_{HL}}{\gamma_{L}} \\ \frac{\beta_{LH}}{\gamma_{H}} & \frac{\beta_{LL}}{\gamma_{L}} \end{pmatrix}$$

$$\det(K - \Lambda I) = \begin{vmatrix} \frac{\beta_{HH}}{\gamma_{H}} - \Lambda & \frac{\beta_{HL}}{\gamma_{L}} \\ \frac{\beta_{LH}}{\gamma_{H}} & \frac{\beta_{LL}}{\gamma_{L}} - \Lambda \end{vmatrix} = \mathbf{0}$$

• Solve for largest Λ

Worked example

• Let
$$\gamma_H = \gamma_L = 50$$
,

• With WAIFW matrix give by $\beta = \begin{pmatrix} 45 & 20 \\ 20 & 35 \end{pmatrix}$

$$K = FV^{-1} = \begin{pmatrix} 45 & 20 \\ 20 & 35 \end{pmatrix} \begin{pmatrix} \frac{1}{50} & 0 \\ 0 & \frac{1}{50} \end{pmatrix}$$
$$= \begin{pmatrix} .9 & .4 \\ .4 & .7 \end{pmatrix}$$

$$\det(K = \Lambda I) = \begin{vmatrix} .9 - \Lambda & .4 \\ .4 & .7 - \Lambda \end{vmatrix} = \Lambda^2 - 1.6\Lambda + 0.47$$

• So $\Lambda = 1.21$ or $.39 \Rightarrow R_0 = 1.21$

Limitations

- R₀ quantifies overall transmission useful for control measures that ignore epidemiological "type"
- Not target specific
- What if interested in focusing on high risk group?

 Control measures could be aimed at, for example, paths leading to High risk group

Type Reproduction Number

- **O** If control strategy is aimed at particular host types, (vectors, wildlife reservoir, domestic animals), then so-called "type reproduction number", *T*, takes over role of R₀
- **O** Its value determines control effort needed

Type Reproduction Number

Type reproduction Number, T_i

- All paths leading to *i* targeted

 $I \rightarrow i, 2 \rightarrow i, ..., p \rightarrow i.$

• Let x be set of all targeted paths

• Then

 $x_1 = \{i\}, x_2 = \{1, ..., n\} \text{ and } T_i = \mathcal{T}_{1 \to i, 2 \to i, ..., n \to i}$

Basic reproduction Number, R₀: all possible paths are targeted
 x₁={1,2, ..., n}, x₂={1, ..., n}

Target Reproduction Number

• Suppose we target q paths of transmission $j_1 \rightarrow i_1, j_2 \rightarrow i_2, ..., j_q \rightarrow i_q$

• Let x be set of all targeted paths 'recipient' $\longrightarrow x_1 = \{i_1, i_2, ..., i_q\}, \quad x_2 = \{j_1, j_2, ..., j_q\}$ 'donour' classes

• The Target Reproduction Number is

 $\mathcal{T}_X = \rho(P_{x_1} K P_{x_2} (1 - K + P_{x_1} K P_{x_2})^{-1})) \text{ if } \rho(K - P_{x_1} K P_{x_2}) < 1$

• where P_{xi} is a projection matrix ($P_{k,k} = 1$ if $k \in x_i$, zero otherwise)

Shuai et al. (2012; J Math Biol)

Target Reproduction Number

if $\rho(K - P_{x_1}KP_{x_2}) > 1$

then T_X is not defined since disease cannot be eradicated by targeting only x

Targeting S_H

- Target paths: $H \rightarrow H, L \rightarrow H$.
- $x_1 = \{H\}, x_2 = \{H, L\}$
- Target reproduction number:

$$T_{\rm H} = \mathcal{T}_{\rm H \to H, \, L \to H}$$

= $\rho(P_{x_1}KP_{x_2}(1 - K + P_{x_1}KP_{x_2})^{-1})), \text{ if } \rho(K - P_{x_1}KP_{x_2}) < 1$

$$K = \begin{pmatrix} 0.9 & 0.4 \\ 0.4 & 0.7 \end{pmatrix} P_{x_1} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} P_{x_2} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Targeting S_H (10)(09) 0.4)(10) (0.9) 0.4)

$$P_{x_1}KP_{x_2} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0.9 & 0.4 \\ 0.4 & 0.7 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0.9 & 0.4 \\ 0 & 0 \end{pmatrix}$$

• Check:
$$\rho(K - P_{x_1}KP_{x_2}) = 0.7$$

 $(P_{x_1}KP_{x_2})\left(I - K + (P_{x_1}KP_{x_2})\right)^{-1}$
 $= \begin{pmatrix} 0.9 & 0.4 \\ 0 & 0 \end{pmatrix} \left[\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} 0.9 & 0.4 \\ 0.4 & 0.7 \end{pmatrix} + \begin{pmatrix} 0.9 & 0.4 \\ 0 & 0 \end{pmatrix} \right]^{-1}$
 $= \begin{pmatrix} 1.43 & 1.33 \\ 0 & 0 \end{pmatrix}$

• Hence, $T_H = \mathcal{T}'_{H \to H, L \to H} = 1.43$

• Need to vaccinate susceptibles: $1-1/T_H = 1-1/1.43 = 0.3$

Lowering H->H transmission

- Target paths: $H \rightarrow H$.
- $x_1 = \{H\}, x_2 = \{H\}$
- Target reproduction number: $T_H = \mathcal{T}'_{H \to H}$

$$= \rho(P_{x_1}KP_{x_2}(1 - K + P_{x_1}KP_{x_2})^{-1})), \text{ if } \rho(K - P_{x_1}KP_{x_2}) < 1$$

$$K = \begin{pmatrix} 0.9 & 0.4 \\ 0.4 & 0.7 \end{pmatrix} P_{x_1} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} P_{x_2} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

• Hence, $T_H = \mathcal{T}'_{H \to H} = 1.93$

• Need to reduce contact by $1-1/T_H = 1-1/1.93 = 0.48$

More Generally

Target Paths	X 1	X 2	Target Reproduction	Reduction	Vaccination
All	H, L	H, L	$R_0 = 1.21$	0.17	17% H 17% L
H → H L → H	Н	H, L	T _H = 1.43	0.3	30% H 0% L
H → L L → L	L	H, L	$T_{L} = 2.30$	0.57	0% H 57% L
H≯H	Н	Н	1.93	0.48	-
L→L	L	L	Not Defined	-	-
L → H	Н	L	5.33	0.81	_
H≁L	L	Н	5.33	0.81	-

Reduce targeted transmission by 40%

Reduce targeted transmission by 60%

Summary

- Target reproduction number informative for heterogeneous populations
- Behavioural risk (core groups)
- Vectors & Hosts
- Age structure
- Spatial structure

Modeling Age Structure

- So far, looked at heterogeneity arising in contacts, due to behavioural differences (risk structure)
- Now, we consider changing risk due to age structure, motivated by childhood diseases (ie SIR)
- Initially, assume only two age groups: <u>Low</u> risk (Adults) and <u>High</u> risk (Children)
- Differences from previous model: (i) SIR not SIS, (ii) individuals eventually move from class *C* to class *A* in SIR model

Modeling Risk Structure

$$\frac{dX_C}{dt} = \nu - (\beta_{CC}Y_C + \beta_{CA}Y_A)X_C - \mu_C X_C - \tau_C X_C$$
$$\frac{dY_C}{dt} = (\beta_{CC}Y_C + \beta_{CA}Y_A)X_C - \gamma Y_C - \mu_C Y_C - \tau_C Y_C$$

$$\frac{dX_A}{dt} = \tau_C X_C - (\beta_{AC} Y_C + \beta_{AA} Y_A) X_A - \mu_A X_A$$
$$\frac{dY_A}{dt} = \tau_C Y_C + (\beta_{AC} Y_C + \beta_{AA} Y_A) X_A - \gamma Y_A - \mu_A Y_A$$

 $N = N_C + N_A = (X_C + Y_C + Z_C) + (X_A + Y_A + Z_A)$

Initial Dynamics

 Again, key thing is WAIFW matrix, which we'll assume to take following form

$$\beta = \left(\begin{array}{rrr} 100 & 10\\ 10 & 20 \end{array}\right)$$

• Let's assume $1/\tau_{\rm C}$ = 15 years & $1/\tau_{\rm A}$ = 60 years

• So, $N_C/N = 0.2$ and $N_A/N = 0.8$

• Using same spectral radius approach as before, we get $R_0 \sim 2.2$

Paediatric Vaccination

P_c ~ 0.55

Prevalence much higher in C class than A class

Vaccination threshold same as in unstructured model (!!)

Low levels of immunization increase fraction of population susceptible (!!)

Which WAIFW?

- So far, we have used hypothetical WAIFW matrices
- In reality, we may have data on disease prevalence in C and A classes, but our matrix β has 4 entries we need to estimate!
- Pragmatic assumption has been to simplify WAIFW along intuitive/ sensible lines, eg

$$\beta = \left(\begin{array}{cc} \beta_1 & \beta_2 \\ \beta_2 & \beta_2 \end{array}\right)$$

• Often, reasonably obvious what's not a plausible WAIFW matrix

$$eta_{ ext{unlikely}} = \left(egin{array}{cc} eta_1 & eta_2 \ eta_2 & eta_1 \end{array}
ight), \left(egin{array}{cc} eta_1 & 0 \ 0 & eta_1 \end{array}
ight), \left(egin{array}{cc} eta_1 & 0 \ eta_2 & 0 \end{array}
ight), \ldots$$

Application to Childhood Diseases

- Some of earliest discrete age-class (RAS) models developed for measles (Schenzle 1984)
- Make pragmatic assumption: transmission, especially in prevaccine era, primarily driven by school dynamics
- Need four age groups
 - Pre-school (0-4 years)
 - Primary school (5-10 years)
 - Secondary school (11-16 years)
 - Adults (16+)
- We're now faced with old problem of which WAIFW?

Typical age-specific data

Given *n* age classes, age-specific transmission matrix has n^2 elements ... correcting for reciprocity, we still have n(n-1)/2 term

Often, only have information on age-specific prevalence or serology

Which WAIFW?

• Two seemingly sensible WAIFW matrices are

$$\beta = \begin{pmatrix} \beta_2 & \beta_2 & \beta_3 & \beta_4 \\ \beta_2 & \beta_1 & \beta_3 & \beta_4 \\ \beta_3 & \beta_3 & \beta_3 & \beta_4 \\ \beta_4 & \beta_4 & \beta_4 & \beta_4 \end{pmatrix} \beta = \begin{pmatrix} \beta_2 & \beta_4 & \beta_4 & \beta_4 \\ \beta_4 & \beta_1 & \beta_4 & \beta_4 \\ \beta_4 & \beta_4 & \beta_3 & \beta_4 \\ \beta_4 & \beta_4 & \beta_4 & \beta_3 \end{pmatrix}$$

With $\beta_1 > \beta_2 > \beta_3 > \beta_4$

Mossong et al. (2008)

Age-specific contacts

Contacts at home

Age of Participant

Age of Participant

Age of Participant

Age of Participant

Contacts at work

60 Age of Participant

GB

8

욱

20

0

0

Age of Contact

NL

PL

Read et al. (2014)

Social mixing data from urban & rural China

Newer studies

	UTATIONAL GY	Get Published About BMC
	RESEARCH ARTICLE Projecting social contact matrices in 152 countries using contact surveys and	Open Peer Review of human encounters and social
	OPEN access Freely available online	PLOS COMPUTATIONAL OUS diseases
Check for updates	Inferring the Structure of Social Contacts Demographic Data in the Analysis of Infe Spread	s from ectious Diseases and W. J. Edmunds
6	1 Bruno Kessler Foundation, Trento, Italy, 2 Department of Statistics and Mathematics Applied to Economics, University of P and College of Computer and Information Sciences, Northeastern University, Boston, Massachusetts, United States of Ame at Harvard University, Cambridge, Massachusetts, United States of America, 5 Institute for Scientific Interchange Foundate INTECTIOUS DISEASES IN THE HIGHIAD OF P	isa, Pisa, Italy, 3 Department of Health Sciences rica, 4 Institute for Quantitative Social Sciences ion, Turin, Italy
CrossMark clck for updates	 Carlos G. Grijalva¹*, Nele Goeyvaerts^{3,4}, Hector Verastegui⁵, Kathryn M. Edward I. Gil⁵, Claudio F. Lanata⁵, Niel Hens^{3,4}, for the RESPIRA PERU project 1 Department of Health Policy, Vanderbilt University School of Medicine, Nashville, TN, United S America, 2 Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, Ur of America, 3 Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt Unive Diepenbeek, Belgium, 4 Centre for Health Economics Research and Modeling Infectious Diseass Centre for the Evaluation of Vaccination, Vaccine & Infectious Disease Institute, University of Antwille, Belgium, 5 Instituto de Investigación Nutricional, Lima, Peru 	s ² , Ana tates of hited States ersity, es, and werp,

* Carlos.grijalva@vanderbilt.edu

Age Structured Dynamics

Rohani, Zhong & King (2010) Science

Age-structured SEIR model

P

births I-p

Model, simulated as time varying Markov Chain Updating of age-classes occurs annually 0-19 one-year classes, and 20+

E

Age-specific transmission rate

Force of infection determine by:

Solution Contact structure (κ_{ij}) -- from Mossong study

> Probability that contact is with infectious -- Y_j/N_j

> Transmission probability, given contact -- v_i

Age-Structured transmission: from data

- From age-specific incidence data, calculate age-specific force of infection
- •That is, probability of infection while in age class i
- P(infection in age i) = $1 \exp(-\lambda_i \Delta a_i)$

$$\lambda_i^d = -\frac{1}{\Delta a_i} \log\left(\frac{\sum_{j=i+1}^n D_j}{\sum_{j=i}^n D_j}\right)$$

 Δa_i is width of class *i* D_j is incidence data in class *j*

Age-Structured transmission: from model

- We know κ_{ij} –rate of contacts between class *i* and class *j* so,
- K_i is risky contacts of class $i = \sum_j \kappa_{ij} Y_j / N_j$
- Thus, force of infection is
 - $\lambda_i = v_i K_i$

• v_i is probability of infection given contact • So, $v_i = K_i / \lambda_i^d$

Fluctuations likely due to age-specific biases in contact data and agespecific variation in detectability, susceptibility, and nature of contacts as related to transmission

Assume v_i constant to assay role of age-specific contacts in transmission

Model-data comparison

overall	
(0-12 mon)	
1-5	20-75

Does the Contact Matrix Matter?

Summary

- Incorporating age-specific transmission introduced need for additional data (contact matrix)
- Pragmatic decisions permitted modeling of age-stratified system
- Model explains shifts in age distribution of incidence as a natural consequence of vaccination and age assortativity in contacts