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Sources of Heterogeneity in Contacts

Individual exposure and infection hazard may be heterogeneous for
a number reasons:

|.  Risk structure
Determined by behavioural patterns
Or related to occupation
Age-determined contacts
Childhood diseases
Seasonality
Time-dependent contact rates



Simple contact heterogeneities

* Contact tracing to examine HIV transmission network in
Colorado Springs:




More Generally
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Modeling Risk Structure

Introduce a model consisting of individuals
whose behaviour/work places them in one
of two kinds of groups: Low risk and High
risk

Extend simple SIS model
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What'’s R,?

¢ Instead of a single transmission rate (), we now

have a matrix of transmission parameters ([3)

BHH BHL
Pri Pre

This is called WAIFW (Who Acquires Infection From Whom) matrix

Typically, it's assumed B, = B,

And high assortativity, such that .., > B,, > B,



’
What'’s R,?
% At disease-free equilibrium

(SHlevsLalL) (1 O 1 O)

® F = new infections ® 'V = pathogen progression
® Fu =B,y SHlH+ By, SHlL ® Vu=VHlH
® FrL=0B, Su+B St e V. .=yl

F:<5HHST 5HLST):<5HH 5HL> V:(VH 0 )
BurdSy  BrrS; Bar BrLr 0

Diekmann et al. (1990; J Math Biol.)



What'’s R,?

% Next generation operator, K, given by

FV—1 = (

det(K — Al) =

* Solve for largest A
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Worked example

® Let Yyu=YyL = 50,

® With WAIFW matrix give by 8 = ( 4213 3(5) >

45 20 =0
=y (20 35)(0 i)
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det(K:AI):| A - A

| — A° —1.6A +047

® SoA=1210r.39 = Ry=1.21



Limitations

useful for control measures

® Ry quantifies overall transmission
that ignore epidemiological "type”

® Not target specific

® What it interested in focusing on high risk group?

0.4

0.9 @ 0'7

0.4

® Control measures could be aimed at, for example, paths leading
to High risk group



Type Reproduction
Number

O If control strategy is aimed at particular host types, (vectors,
wildlife reservoir, domestic animals), then so-called “type
reproduction number”, T, takes over role of R,

O lIts value determines control effort needed

Roberts & Heesterbeek (2003; Proc B)



Type Reproduction
Number

® Type reproduction Number, T;

- All paths leading to i targeted

| = i,2 2 i,.,p i

* Let x be set of all targeted paths
° Then
x1={i}, xo={1, ..., n} and Ti = T1-i, 21, ..., noi

Basic reproduction Number, Ro: all possible paths are targeted

Roberts & Heestert;eek (2003; Proc B)



Target Reproduction
Number

® Suppose we target g paths of transmission

j| — ||’]2 — |29 ---’jq — IC|

° Let x be set of all targeted paths

‘recipient’ _——» X| = {iI, 12, ...y iq}, X2 = {jl, jZ, ooy ]q} <«—___‘donour’
classes classes

* The Target Reproduction Number is

Tx = p(Py, KPy,(1 — K + Py, KP,,) ™)) if p(K — P, KP,,) <1

® where Py is a projection matrix (P = 1 if k € x;, zero otherwise)
Shuai et al. (2012; J Math Biol)



Target Reproduction
Number

if p(K — Py, KP,,) > 1

then Tx is not defined since disease cannot be
eradicated by targeting only x

Shuai et al. (2012; J Math Biol)



Targeting SH

0.

0.9 @ 0.7

0.4

Target paths: H—=H,L > H.
x1={H}, xo={H, Lj
Target reproduction number:

TH = q-)H—>H, L—H
= p(Py,KP,,(1 - K+ P, KP,.)™%)),if p(K — P,,KP,,) <1

0.9 04 1 0 I 0
K_<O.4 O.7> Pa;l_(() O) PxQ_(O 1)



Targeting SH

1 0 0.9 04 1 O 0.9 04
leKPQZ‘Q — —
(0 0)(0.4 0.7)(0 1> (o 0)

> Check: p(K—-P, KP, )=0.7 \/
—1
(Py, KP,,) (I — K+ (leKPx2)>
(09 04 L 0\ (09 04 n 0.9 04
o 0 0 0 1 0.4 0.7 0 0
[ 143 1.33
N 0 0

e Hence, Ty = ’T)H_>H, L—H = 1.43

* Need to vaccinate susceptibles: 1-1/Tu=1-1/1.43 =0.3



Lowering H>H transmission

0.9 @ 0‘7

° Target paths: H — H.
° x1={H}, xo={H}
o Target reproduction number: Tu = Tu_n

= p(Py, KP,,(1 - K 4+ P, KP,) %)),if p(K — P,,KP,,) <1

0.9 04 1 0 1 0)
— p— PQZQZ
" (0.4 0.7>le (0 0) <00
e Hence, Ty = TH H- 1.93

* Need to reduce contact by 1-1/Tu=1-1/1.93 = 0.48



More Generally

(o)
Al H L H L Ro = 1.21 0.17 17% H
17% L
H > H H H, L Ty = 1.43 0.3 30% H
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Reduce targeted
transmission by 40%
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Reduce targeted

transmission by 6
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Summary

Target reproduction number informative for
heterogeneous populations

Behavioural risk (core groups)
Vectors & Hosts
Age structure

Spatial structure



Modeling Age Structure

So far, looked at heterogeneity arising in contacts, due to
behavioural differences (risk structure)

Now, we consider changing risk due to age structure,
motivated by childhood diseases (ie SIR)

Initially, assume only two age groups: Low risk (Adults) and
High risk (Children)

Differences from previous model: (i) SIR not SIS, (ii) individuals
eventually move from class C to class A in SIR model



Modeling Risk Structure
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Initial Dynamics

e Again, key thing is WAIFW matrix, which we’ll assume
to take following form

lilil) i)
hes Jeldac 2

® let’s assume |/t~ = |5 years & |/t, = 60 years
® So,N-/N=0.2and N,/N =0.8

® Using same spectral radius approach as before, we get R, ~2.2



Paediatric Vaccination

P_~ 0.55

Childhood class Disease Free

- - - Adult class
— Total
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Proportion of class susceptible, S;/n;
o

) 0.2 0.4 0.6 0.8
Proportion vaccinated, p Proportion vaccinated, p

Prevalence much higher in C class than A class
Vaccination threshold same as in unstructured model (!!)
Low levels of immunization increase fraction of population susceptible (!!)




Which WAIFW!?

e So far, we have used hypothetical WAIFW matrices

e In reality, we may have data on disease prevalence in C and A classes,
but our matrix B has 4 entries we need to estimate!

e Pragmatic assumption has been to simplity WAIFW along intuitive/

sensible lines, eg
i Do
5‘(@ @)

e Often, reasonably obvious what's not a plausible WAIFW matrix

i :<51 52)(51 0)(51 0)
unlikely 52 51 ’ 0 ﬁl ) 52 0 e



Application to Childhood Diseases

e Some of earliest discrete age-class (RAS) models developed
for measles (Schenzle 1984)

 Make pragmatic assumption: transmission, especially in pre-
vaccine era, primarily driven by school dynamics

* Need four age groups
e Pre-school (0-4 years)
e Primary school (5-10 years)
e Secondary school (11-16 years)
e Adults (16+)

e We're now faced with old problem of which WAIFW?



Typical age-specific data

Given n age classes, age-specific transmission matrix has n2 elements
... correcting for reciprocity, we still have n(n-1)/2 term
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Often, only have information on age-specitic prevalence or serology



Which WAIFW!?

e Tw '
o seemingly sensible WAIFW matric
es are
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With > B, > B3> B,
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Mossong et al. (2008)
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Age-specific contacts




Contacts ar home
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Contacts at work
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Read et al. (2014
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Newer studies
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Age Structured
Dynamics

per 100,000
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Rohani, Zhong & King (2010) Science




Age-structured SEIR
model

births

Model, simulated as time varying Markov Chain
Updating of age-classes occurs annually
0-19 one-year classes, and 20+




Age-specific transmission rate

Force of infection determine by:

> Contact structure (k;) -- from Mossong study

> Probability that contact is with infectious -- Y/N;
> Transmission probability, given contact -- v.




Age-Structured transmission:
from dato

efFrom age-specific incidence data, calculate age-specific force
of infection

®That is, probability of infection while in age class i

®P(infection in age i) = 1 — exp(-A; Aa))




Age-Structured transmission:
from model

® \We know kjj —rate of contacts between class i and class j-
SO,

® K; is risky contacts of class i = & kj Y//N;

® Thus, force of infection is
°
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Estimating Vv,

Probability (v;)

Fluctuations likely due to age-specific biases in contact data and age-
specific variation in detectability, susceptibility, and nature of contacts as
related to transmission

Assume V; constant to assay role of age-specific contacts in transmission



Model-data comparison

overall
infant

(0-12 mon)
1-5

500
0!

g

o

o
o
Q
o
o
-
6 000
Q
]
O
)
3,
O

1985 1995 2005




Does the Contact
Matrix Matter?
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Summary

Incorporating age-specific transmission
introduced need for additional data (contact
matrix)

Pragmatic decisions permitted modeling of
age-stratified system

Model explains shifts in age distribution of
incidence as a natural consequence of
vaccination and age assortativity in contacts




