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Global causes of mortality
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In low-income countries, 45% of all deaths are from infectious diseases
s | S Total mortality
s v INfant mortality }

P A AV ——— W

N, AN S PN AN NN PINGINETIN PN PN FINANCT N PSS PTG FINSINETIN IS PN FINAN N PANET S|



Multifaceted approach to
understanding infectious diseases

‘]\;Iedz'cz'ne 4 But these approaches don’t address

g - important questions at population
' level ...
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* What is etiological agent?
* |s it novel?
* |s a vaccine available?
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Modeling questions I. Basics
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What is a model?

@ Different types of models:

o A mathematical/computational model is an
abstract model that uses mathematical language to describe

the bebaviour of a system

o A Statistical model attempts to describe relationships

between observed quantities and independent variables

o Developing a model is different from statistical analyses of
data
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Abstraction

Purpose = Components

; Conceptualization
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What’s a ‘Good’ Model?

& Choice of model depends crucially on focal
question and available data (hammer & chisel or

pneumatic drill?)

@ Use model principally for
@ understanding nature

@ making predictions
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Judging a Model...

« Three fundamental features of models, often opposing forces:

o  Accuracy
o Capture observed patterns (qualitative or quantitative?) and make
predictions

o Increases with model complexity

o Transparency
o Ability to understand model components
@ Decreases with model complexity

o Flexibility

e How easily can model be adapted to new scenarios?

e Decreases with model complexity
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Realism Vs Transparency

Multi-Scale
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‘How’ do you Model?

Analytical Models
Concentrate on problems that can be expressed and
analysed fully using analytical approaches.

Hicrosan

@ <\ The MathWorks

Problem-based Models %
Construct most “appropriate” model and use “Eortra Populus
whatever combination of methods for analysis and """“‘"sm«“mﬂ“f«m'
prediction.
ModelMaker oo

Ready-Made Software e
ModeyIMaker ot %&.&u

www.modelkinetix.com/modelmaker/modelmaker.html|
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Global simulators

11 5 2014

o Keeling & Robani (2008)
s Vynnycky & White (z010)
o Anderson & May (1991)

s Otto & Day (2007)




Mathematical Modelling of Infectious Diseases

@ Objective 1: Setting up simple models & Objective 4: Heterogeneities

¢ Different transmission modes ¢ Risk structure
« Basic Reproduction Ratio (Ro), # Realistic pathogenesis
Simple Epidemics, Invasion » Seasonality
Aot nelld  exGinesion & Age-structured transmission
& Stability analysis effects
»  Objective 2: Control &  Objective §: Sensitivity
# Infection management & Stochastic implementation
= Objective 3: Statistical estimation » Parameter uncertainty
» R, and other parameters
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The simplest models

o Let’s develop a model for Boarding School influenza outbreak

o Some important choices need to be made at outset
r. What do we want to keep track of ?
o Amount of virus in population?
& Antibody titre of everyone in population (school)?
o Cities in which infected people bave been found?




Healthy Incubating Diseased

Susceptible Exposed/latent Infectious Recovered/Immuneg Infection status

immune
esponse

Incubating Infectious, Infectious, Infectious,
latent symptomatic quarantined

= Pragmatic choice: categorise individuals in population according to
their infection status, eg:

= Susceptible

& Infectious

These are our
System variables”

= Recovered/Immune
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The simplest models

-- Determined by pathogen biology

Susceptible Infectious SI — signifies fatal infection

Susceptible Exposed Infectious Recovered SEIR — latency

Susceptible Infectious Recovered SIR — recovery aﬁer mﬁzc tion %

Susceptible Infectious SIS —no immunity elicited

N TN TN TN N RN N TN S N

The simplest models

2. What model structure?

-- Determined by pathogen biology

Carrier

Susceptible Infectious A Recovered SIR — with carriers

Susceptible Exposed Infectious Recovered

Infectious Susceptible Nﬁk Vectored transmission




The simplest models

¢ What model structure? -
&

& Depends on what do we know about the pathogen (eg, influenza)

s It’s directly transmitted (aerosol)
# An acute infection

« Lifelong immunity (to that strain)

Transmission Recovery

| {

Susceptible Infectious Recovered

The simplest models

Transmission Recovery

Susceptible Infectious Recovered

Flow between classes/compartments determined by details of host

population structure and pathogen biology

1

@ Host population size

o Contact rates

©  Pathogen infectivity

ese are our ‘parameters”




The simplest models

3. Deterministic or stochastic?

120 T -

i ot Deterministic 50 independent

stochastic

\// realizations
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Time
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i
ow average, stochastic simulations toentical to deterministic
predictions, though individual realizations may be quite different
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Realism Vs Transparency

Multi-Scale

Resolution

Solution tools
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The simplest models

s We've settled on a deterministic SIR model — now what?

s+ How do we write down some equations to describe spread of ‘flu in this
population?
& Assign each system variable a unique Roman letter, eg:
& Susceptible, S (proportion) or X (number)
& Infectious, I (proportion) or Y (number)
= Recovered/Immune, R (proportion) or Z (number)
@ Assign parameters a unique (typically Greek) letter, eg:
» Contact rate, K

e Pathogen infectivity, v
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Very important!

& NOTHING SPECIAL ABOUT MY CHOICE OF NOTATION
- USE OF PARTICULAR LETTERS HIGHLY
(DIOSYNCRATIC

& OTHER AUTHORS MAY USE PIFFERENT LETTERS
TO DPENOTE SAME VARIABLES OR PARAMETERS.

& YOU CANNOT AUTOMATICALLY ASSUME THAT B IN
TWO DIFFERENT PAPERS MEANS THE SAME THING!
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Model equations

If we knew X, and Y, could we predict X, and Y__;,, where 0t is some (very
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short) time later?

D= N (e ) RENIN]
Y. =Y +Oko) X, Y/N-GF )Y,

t+0t

And

Z.s=2+GoY,

t+0t

Vv is probability of transmission given contact
K 75 contact rate
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Basic questions?

X (B 50) X, Y./N
Y.+ BOOX, Y/N- (DY,

=Z+@G oYY,

i

t+0t

74

t+0t

= Average infectious period given by 1/y [why?}
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Mean life time calculation

Consider recovery of a single infectious individual Il (t) — e_fyt

oo
c
1:/ CER Lt =
G 6

Hence, probability density function is yet

7'=/ tyve™"dt = —
0 o

For a random variable x, with probability density function f(x), the mean is given by /0 o f(z)dx
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An ODE model

@ Consider the equation describing Susceptible dynamics
Xese= X~ B X, Y/N

t+0t —

o Re-write as
Xivoe~ X =~ (B ov) X, Y/N
Koo~ XD/ 0t=p X Y /N

t+0t

By fundamental theorem of calculus, as 6t — o,

dX/dt=-p X Y/N
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An ODE SIR model

dX Y

BEEENE o

dt b N
T Y
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0 By definition, X+Y+Z =N

o These equations describe rates of change in state variables
o Parameters 3, y represent instantaneous rates
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An ODE SIR model

In my lectures (as in K&R 2008),
variables X, Y & Z refer to the
numbers of individuals in each class.

Variables S, I, & R refer to the

proportions of the population in
each class

o These equations describe rates of change in state variables
o Parameters {3, y represent instantaneous rates

) T 0 O -y,




An ODE SIR model
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@ Important to notice: transmission rate is assumed to depend on

)
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frequency of infecteds in population (Y/N). Hence, this is frequency- L
i
dependent transmission ‘.
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Model dynamics

& As parameters are varied, model predicts different

outcomes

& Can we anticipate trajectories without resorting to

numerical integration?

& Question: under what conditions will an infectious |

disease invade a system?
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The Invasion Threshold

£+ When can an infectious disease invade a population?
£+ Initial conditions: X(0)=N, Y0)-1,Z0)-0
£+ InvasiononlyifdY/dt>0

o ie, BXY/N-YY>0 =YPBX/N_-y)>0

@ Ifand only if X/N > y/B

£+ Since X=N, requires 1> y/B
& OrByy>1

Kermack & McKendrick (1927) |

BN S




Iy T A A

Basic Reproductive Ratio, R,

@ Ratio 3/y gives number of cases before infected individual recovers

@ Universally referred to as R or Basic Reproductive Ratio

@ Definition: Number of secondary cases generated by a typical infected

in an entirely susceptible population

Ro<1
No nvasion

Successful invasion
- SR
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R, and Model parameters
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Estimates of R,

FIV domestic cats LIL§

)4/

Rabies dogs (Kenya) 2.4
Phocine Distemper Harbour seals 23
Tuberculosis Cattle 2.5
Seasonal Influenza Humans 34
Foot-and-Mouth Disease Livestock 3.5°4.5
Smallpox Humans 3.5-6
Rubella Humans 67
Chickenpox Humans

Measles Humans

‘Whooping Cough Humans

HIV (MSM) Humans 4
HIV (sex workers) Humans 193
SARS Humans 3
Pandemic Influenza (1918) Humans 1.573
Pandemic Influenza (2009) Humans 12715

Polio Humans 8-10
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