
Parameter 
estimation

Parameter estimation

We’ve seen that basic reproductive ratio, R0, is a central 
and useful quantity
How do we calculate it from data?  

Review some simple methods

In general, how do we achieve parameter estimation from 
epidemiological data?



1a. Final outbreak size

From lecture 1: for an SIR system at end of epidemic:
! S(∞) = 1 – R(∞) = S(0) e –R(∞) R0

So, if we know population size (N) , initial susceptibles 
(to get S(0)), and total number infected (to get R(∞)), 
we can numerically calculate R0

Note: Ma & Earn (2006) showed this formula is valid even 
when numerous assumptions underlying simple SIR are 
relaxed

1. Final outbreak size

Worked example:

Influenza epidemic in a 
British boarding school in 
1978

N = 764
X(0) = 763
Z(∞) ~ 512

Gives

R0 ~ 1.65



1b. Final outbreak size

Becker (1989) showed that with more information, we 
can also estimate R0 from 

Again, we need to know population size (N) , initial 
susceptibles (X0), total number infected (C)

Usefully, standard error for this formula has also been 
derived

(~1.66)

(~1.85)

2. Independent data: 
mean age at infection

An epidemiologically interesting quantity is mean age at 
infection – how do we calculate it in simple models?
From first principles, it’s mean time spent in susceptible 
class
At equilibrium, this is given by 1/(βI*), which (we’ll see in 
next lecture) leads to 

!This can be written as R0-1 ≈ L/A (L= life expectancy)

!Historically, this equation’s been an important link between 
epidemiological estimates of A and deriving estimates of R0



Measles Age-Stratified 
Seroprevalence

Infection-
derived 

immunity

Maternally-
derived 

antibodies

Mean age at infection is ~4.5 yrs
Assume L~75, ⇒ R# ∼ 16.6

Historical significance

Anderson & May (1982; Science)



3.  Epidemic Take-off

Recall from linear stability 
analysis that

Take logarithms

So, regression slope will 
give R0

More common approach is to study epidemic take off

3. Epidemic take-off

Back to the school boys

Influenza 
epidemic in a 

British boarding 
school in 1978

Looks like 
classic 

exponential 
take-off



Epidemic take-off

Λ = 1.0859

So, 
R0=1.0859*2.5+1
     = 3.71

Our 
(guessed?) 

value for ‘flu 
incubation 

period

Vynnycky et al. (2007)

but which depended on reliable estimates of the final size of
the outbreak,10 for settings where there was likely to be little
underreporting of cases (i.e. where at least 30% of the
population was reported to have experienced influenza).
For simplicity, the contribution of asymptomatic individuals
is not considered here, as these affect estimates of the
reproduction numbers based on the growth rate of the outbreak
only if the proportion of individuals who are asymptomatic
changes over time, and such changes are unlikely to have been
substantial.

Estimates of the reproduction numbers using the
growth rate of the epidemic

The effective reproduction number for influenza (Rn) at the
start of each wave for the data shown in Figure 1 was
calculated using the expression, as provided by Wearing et al.:9

Rn ¼ !2ðL# DÞ þ!ðLþ DÞ þ 1 ð1Þ

where L and D are the average durations of the latent and
infectious periods, respectively and ! is growth rate in the
cumulative number of cases during the growth phase of the
given outbreak. The above equation holds when the latent and
infectious periods are assumed to follow the negative exponen-
tial distribution; in this situation, the term LþD equals the
serial interval, defined as the time interval between successive
cases in a chain of transmission.11,12 Equation (1) thus
highlights the fact that the reproduction number increases
with the size of the serial interval. The above expression for the
effective reproduction number is analogous to that used to
calculate the basic reproduction number using data from
outbreaks for an infection which is introduced into a popula-
tion for the first time, and has been applied to data for SARS
and HIV.13,14

The average growth rate (!) in the cumulative numbers of
cases in a given setting was calculated as the gradient of the
straight line fitted, using linear regression, to the natural
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Figure 1 Summary of the weekly incidence of influenza cases observed in confined settings, in population-based studies in Maryland (USA),
Scandinavian cities and in American cities during the period April 1918 to April 1919.
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Vynnycky et al. (2007)

and 2.6–10.6 for the assumption that the serial interval was

2.5 and 4 days, respectively. The assumption of a 6 day serial

interval was associated with very high R0 estimates for all

outbreaks in confined settings (e.g. >15 for ‘The Devon’).

For community-based settings, estimates of the reproduction

numbers calculated using the final size of the outbreak were

consistent with those estimated using the growth rate of the

wave (Figure 2). For the outbreaks occurring on the boats,
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Figure 2 Summary of estimates of the effective and basic reproduction number in various settings during the period April 1918 to April 1919. The
lower and upper limits on the points for estimates obtained using the growth rate in the cumulative numbers of cases reflect reproduction numbers
obtained assuming a serial interval of 2.5 and 6 days, respectively. For the ‘Devon’, the upper limit of the basic reproduction number estimate is 17.
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Variants on this theme

Recall

Let Td be ‘doubling time’ of outbreak

Then, 
R0 = log(2)/(Td γ) +1



4. Likelihood & estimation

Given some epidemiological data, a model and 
some parameter values, “likelihood” is a 
measure of model’s appropriateness as a 
descriptor of reality
L(model | data) = Pr(data | model)

Assume we have data, D, and model output, M 
(both are vectors containing state variables).  
Model predictions are generated using set of 
parameters, θ.

4. Likelihood & estimation

Data, D
Model output, M 
Parameters, θ

If (we assume) errors are normally distributed, 
with mean µ and variance σ2 then Also assumes 

likelihood of 
sequential 
observations 
independent – 
sensible?



4. Likelihood & estimation

Data, D
Model output, M 
Parameters, θ

Often easier to deal with Log-likelihoods:

4. Likelihood & estimation

Want parameter set " that gives predictions 
with smallest deviation from data
Can quantify goodness of fit using least 
square errors

SSE = Σ(Di – Mi)2

Then miminise SSE to arrive at best parameter 
estimates



Curve fitting
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Impact on R
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 estimation: Influenza outbreak in a 

school (1978)
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•Systematically vary β and γ, 
calculate SSE

•Parameter combination with 
lowest SSE is ‘best fit’



Impact on R
0
 estimation: Influenza outbreak in a 

school (1978)

Best fit parameter values:
1. β = 1.7 (per day) 
2. 1/γ = 2.2 days
3. R0 ~ 3.74
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Caveat

In boarding school example, data represent 
number of boys sick ~ I(t)
Typically, data are ‘incidence’ (newly detected or 
reported infections)
May not correspond to any model variables
May need to ‘construct’ new information:

dC/dt = γI# # diagnosis at end of infectiousness

dC/dt = βSI

Set C(t+Δt) = 0 where Δt is sampling interval of 
data

Lecture Summary …

R0 can be estimated from epidemiological data 
in a variety of ways

Final epidemic size
Mean age at infection
Outbreak exponential growth rate
Curve Fitting

In principle, variety of unknown parameters 
may be estimated from data
Big issue we’ve ignored: reporting bias!


