We've seen that basic reproductive ratio, R, is a central

and useful quantity

How do we calculate it from data?
Review some simple methods

In general, how do we achieve parameter estimation from
epidemiological data?




IA. FINAL OUTBREAK S1Z€

® From lecture 1: for an SIR system at end of epidemic:
" S(o0) = 1 - R(o) = 5(0) e K)o

® So, if we know population size (N), initial susceptibles
(to get S(0)), and total number infected (to get R()),
we can numerically calculate R

Note: Ma & Earn (2006) showed this formula is valid even
when numerous assumptions underlying simple SIR are
relaxed

I. FINAL OUTBREAK S1Z¢€
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1B. FINAL OUTBREAK SIZE€

Becker (1989) showed that with more information, we
can also estimate R, from

X, +
N -1 0
7, - =Ly, 21 (~1.66)
C
-

Again, we need to know population size (N), initial
susceptibles (X,), total number infected (C)

Usefully, standard error for this formula has also been
derived

NP L&l CR
SE(R) =——* = 1
B =t j=;+lj2 (~1.85)

(W -1y

2. INDEPENDENT DATA:
MEAN AGE AT INFECTION

An epidemiologically interesting quantity is mean age at
infection — how do we calculate it in simple models?

From first principles, it's mean time spent in susceptible
class

At equilibrium, this is given by 1/(BI*), which (we'll see in
next lecture) leads to \
1

2 )

m This can be written as R-1 = L/ A (L= life expectancy)

® Historically, this equation’s been an important link between
epidemiological estimates of A and deriving estimates of R,
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Mean age at infection is ~4.5 yrs

Assume L~75, = Ro~ 16.6
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HISTORICAL SIGNIFICANCE

Anderson & May (1982; Science)

Table 2. The intrinsic reproductive rate, R,, and average age of acquisition, A; for various infections [condensed from (25); see also (36)).
Abbreviations: r, rural; u, conurbation.

Average Assumed
Disease in?‘f:l?;n, Geographical location c;rrr)mlrpncu:if;y Time period expel::fleancy Ry
A (years) (years)
Measles 44105.6 England and Wales rand u 1944 to 1979 70 13.7 10 18.0
53 Various localities in North America rand u 1912 to 1928 60 12.5
Whooping 4.1t04.9 England and Wales randu 1944 10 1978 70 14.3 10 17.1
cough 4.9 Maryland u 1908 to 1917 60 12.2
Chicken pox 6.7 Maryland u 1913 to 1917 60 9.0
7.1 Massachusetts rand u 1918 to 1921 60 8.5
Diphtheria 9.1 Pennsylvania u 1910 to 1916 60 6.6
. 11.0 Virginia and New York rand u 1934 to 1947 70 6.4
Scarlet 8.0 Maryland u 1908 to 1917 60 7.5
fever 10.8 Kansas r 1918 to 1921 60 5.5
Mumps 8.9 Baltimore, Maryland E u 1943 70 7.1
13.9 Various localities in North America rand u 1912 to 1916 60 4.3
Rubella 10.5 West Germany rand u 1972 70 6.7
11.6 England and Wales rand u 1979 70 6.0
Poliomyelitis 11.2 Netherlands rand u 1960 70 6.2
11.9 United States rand u 1955 70 59




S. EPIDEMICTAKE-OFF

More common approach is to study epidemic take off

Recall from linear stability
analysis that

=l et

Take logarithms

log(Iyy) = log(I(O) + (R, =Tyt |

So, regression slope will
give R,

0.15
Time (years)

3. EPIDEMIC TAKE-OFE

Back to the school boys

Looks like Z2w
classic

-
exponential ;

take-off o2

Influenza
epidemic in a
. British boarding
school in 1978
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VYNNYCKY €T AL. (2007)
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VYNNYCKY €T AL. (2007

(B) Basic reproduction number
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VARIANTS ON THIS THEME

Recall
log(Zg;) = log(1(0)) + (R, =)yt

Let T, be ‘doubling time’ of outbreak
Then,
R, =1log(2)/(T4y) +1




4.

LIKELIHOOD & €STIMATION

e Given some epidemiological data, a model and

some parameter values, “likelihood” is a
measure of model’s appropriateness as a
descriptor of reality

L(model | data) = Pr(data | model)

Assume we have data, D, and model output, M
(both are vectors containing state variables).
Model predictions are generated using set of
parameters, 6.

LIKELIHOOD & €STIMATION

® Data, D
® Model output, M

Parameters, 0

If (we assume) errors are normally distributed,

with mean u and variance o2 then 1o, assumes

likelihood of
LM@©)1D) =] [— . e
A 2ma? observations
independent —

sensible?




4. LIKELIHOOD & €STIMATION

Data, D
Model output, M

Parameters, 0

Often easier to deal with Log-likelihoods:

1
207

E(Dl o7 Mi)2

i

log(L(M(©) D)) = -glog(zmz)_

4. LIKELIHOOD & €STIMATION

Want parameter set 0 that gives predictions
with smallest deviation from data
Can quantify goodness of fit using least
square errors

SSE = 3(D, - M.)?
Then miminise SSE to arrive at best parameter
estimates
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IMPACT ON R ESTIMATION: INFLUENZA OUTBREAK IN A
SCHOOL (1978)
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*Systematically vary  and y,
calculate SSE

*Parameter combination with
lowest SSE is ‘best fit’
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IMPACT ON R ESTIMATION: INFLUENZA OUTBREAK IN A
SCHOOL (1978)
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Best fit parameter values:
1. p=1.7 (per day)

2. 1/y=22days

3. R, ~3.74
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=1 1

log, ,(Transmission rate (3))
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log : 0(Fiecovery rate (y))




CAVEAT

® In boarding school example, data represent
number of boys sick ~ I(t)

e Typically, data are ‘incidence’ (newly detected or
reported infections)

® May not correspond to any model variables

® May need to ‘construct’ new information:
@ dC/dt=yl  diagnosis at end of infectiousness

e dC/dt=pSI

® Set C(t+At) = 0 where At is sampling interval of
data

LECTURE SUMMARY .

e R, can be estimated from epidemiological data
in a variety of ways
® Final epidemic size
® Mean age at infection
® Outbreak exponential growth rate

® Curve Fitting

® In principle, variety of unknown parameters
may be estimated from data

® Big issue we’ve ignored: reporting bias!




