
Stochastic 
Models

Epidemiological data
• 3 Main kinds of stochasticity

1. Observation noise
• Likelihood of detecting and 

reporting a case

2. Environmental noise
• “good” versus “bad” years

3. Demographic noise
• Individual-level chance events



Motivation
SIR model

Motivation
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Which means

But, in reality, dY = 0, 1, 2, ...

Need to consider physics of 
individuals bumping into 
each other
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Demographic 
Stochasticity

• Defined as fluctuations in population processes arising 
from random nature of events at level of individual

• Baseline probability associated with each event is fixed, but 
because of chance events, individuals experience differing 
fates

• Need to modify ODEs in two ways to incorporate 
demographic stochasticity:
–Make state variables integer-valued (X, Y, Z)
– Introduce transition probabilities

• Some analytical methods possible



Demographic 
Stochasticity

Analytical approaches involving Master Equation 
potentially powerful, but often too difficult to 
implement
Alternatively, results from ‘branching process’ theory 
can be used 
And then, there’s always brute-force simulation (which 
is what we’ll start with)

Demographic 
Stochasticity

Good news: very straightforward methods exist for 
exact simulation of these stochastic processes
To simulate, we need to answer two fundamental 
questions, starting with a specified system state at 
time t:

When is next event?  
What is next event?



 GN(s+δs)=Pr{no event in time interval (t,t+s+δs)}
  =Pr{no event in (t,t+s)} x Pr{no event in (t+s,t+s+δs)}

Deriving time to next 
event

Can derive “inter-event” times from fundamental 
population principles  
Let’s assume we have a population of size N at time 
t, then we define GN(s) as probability that no event 
occurs in subsequent time interval of length s.  So,

So, substituting C(N)=sum of frequencies of all events, 
we get

After tidying up and re-arranging:

By now, you shouldn’t be surprised by what comes next.  We let δs -> 0, 
which gives

Deriving time to next 
event



Deriving time to next 
event

Solu%on'is'exponen%al'equa%on:

Naturally,'probability'that'next'event'occurs'in'(t,t+s)'is'therefore:

So, FN is exponentially distributed

Note: 
independent of 
starting time t

To simulate a random inter-event time, draw a random 
number Y1 from a uniform distribution (1 ≥ U1 ≥ 0) and 
equate with FN(s)

€ 

U1 = FN (s) =1− e−C (N )s

Now, solve for s:

€ 

s = −
log(U1)
C(N)

Can now move on to our exact stochastic simulation algorithm

Deriving time to next 
event



Demographic 
Stochasticity

Many ways to implement such an approach 
(K&R pp200-205)
A popular (and mathematically rigourous) 
method is called Gillespie’s Direct Algorithm 
(Gillespie 1977)

Gillespie’s Direct 
Method

1.Label all possible events E1, …, En

2.Calculate rate at which each event occurs R1, …, Rn

3.Rate at which any event occurs is Rsum=Σi Ri

4.Calculate time until next event 

5.Generate uniform deviate, U2, and set P = U2 x Rsum

6.Event p occurs if

7.Update state, time t=t+δt and return to step 2



Gillespie’s Direct 
Method

Let’s implement this for SIR model, with 
demography
Event rates are R=(µN, βXY/N, µX, γY, µY, µZ)
Sum of event frequencies is

Time until next event:

Set P = U2 x Rsum and find p
Update variables, time (t = t + δt) and repeat

Stochastic Epidemics



Characterising 
variability

Can repeat invasion of pathogen into virgin 
population a number of times and examine 
consistency in outbreak sizes

This is referred to as the J-to-U transition
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Quantifying 
distribution
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Stochastic Invasion 
Threshold

transmission rate, β
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Important predictions for emerging pathogens: when 
R0 only slightly above 1, “likely” outcome (median) 

very different from “worst-case-scenario” (95th prctile)

Different kinds of epidemics

Type I

Type II

Type III



Critical Community 
Size

Stochastic SIR 
simulations



Pros & Cons
Gillespie’s Direct Method has many virtues:

It’s exact
Straightforward to implement
Widely known and used

But it has one main drawback:
It’s computationally costly when 

1. Population size is large
2. There are lots of events (eg models with loss of 

immunity, many species etc)

Approximations
Most commonly used approximation to GDM is so-
called τ-leap method (also due to Gillespie)
Here, system is updated at fixed time steps of length 
τ

Assuming rate at which an event occurs is ri, then 
number of times this event occurs in a small time 
interval τ is given by Poisson(ri τ)

[Can show GDM recovered as τ -> 0]



Example
For SIR system without demography

› Set parameter values and select τ
› Set ICs and set time = 0
› while time < Tmax

› Infections = poissrnd(τ*beta*X(i)*Y(i)/N)
› Recovery = poissrnd(gamma*Y(i)*τ)
› X (i+1) = X(i) – Infections
› Y(i+1) = Y(i) + Infections – Recovery
› time = time + τ

› end
As τ → 0, this approximation approaches GDM
Choice of τ is critical 

too small and it’s not much faster than GDM
yet too big can lead to imprecision and negative variables

Lecture Summary …
In reality, inferences about transmission process from 
data masked by 3 different kinds of noise: 
observation, environmental & demographic
Can use Gillespie’s Direct Method
Demographic noise important, especially when 
making predictions in settings with R0 near 1


