* 3 Main kinds of stochasticity

1. Observation noise

* Likelihood of detecting and
reporting a case

2. Environmental noise

* “good” versus “bad” years

emographic noise

* Individual-level chance events
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fipidemiological data,

(e) Measles.
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Motivation

e SIR model it
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e Which means ' i
Y
dY = BX —dt — ~Y dt
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® Bul mreality dY =0,1,2, ... t

e Need to consider physics of
individuals bumping into J
each other

t+dt

Demographic
otochasticity

' Defined as fluctuations in population processes arising
: from random nature of events at level of individual

+» Baseline probability associated with each event is fixed, but
. because of chance events, individuals experience differing

. fates

* Need to modify ODEs in two ways to incorporate

. demographic stochasticity:

. _Make state variables integer-valued (X, Y, Z)

—Introduce transition probabilities

' Some analytical methods possible




Demographic
otochasticity

L

o Analytical approaches involving Master Equation
. potentially powerful, but often too difficult to
implement

e Alternatively, results from ‘branching process’ theory
. can be used

e And then, there’s always brute-force simulation (which
. is what we’ll start with)

Demographic
otochasticity

@®Good news: very straightforward methods exist for
. exact simulation of these stochastic processes

@®To simulate, we need to answer two fundamental
. questions, starting with a specified system state at
time t:

@ When is next event?

@ What is next event?




Deriving time to next
event

@ Can derive “inter-event” times from fundamental
: population principles
@Let's assume we have a population of size N at time
. 1, then we define G,(s) as probability that no event
occurs in subsequent time interval of length s. So,
G\ (s+0s)=Pr{no event in time interval (t,t+s+ds)}
=Pr{no event in (t,1+s)} x Pr{no event in (t+s,t+s+3s)}

@5So, substituting C(N)=sum of frequencies of all events,

we get
6N (S +08) =6 (s)x{1-C(N)>s}

Deriving time to next

event
Gy (s +0s) =6 (s)x{1-C(N)»ds}

After tidying up and re-arranging;:

ENE +5§S)-GN (5)]= ~C(N)>G (s)

By now, you shouldn’t be surprised by what comes next. We let ds -> 0,

: which gives

dG
d—SN=—C(N)>GN(5)




Deriving time to next
event

Solution is exponential equation:
: GN(S)=6_C(N)S

Naturally, probability that next event occurs in (t,t+s) is therefore:

- Note:
)1 G (5)=1-c= & independent of
starting time ¢

So, Fy is exponentially distributed

Deriving time to next
event

To simulate a random inter-event time, draw a random
number Y, from a uniform distribution (1 = U, > 0) and
equate with Fy(s)

Ui=E,(s)=1-¢°Y”

. Now, solve for s:

_log(U))
C(N)

Can now move on to our exact stochastic simulation algorithm




Demographic
otochasticity

® Many ways to implement such an approach

 (K&R pp200-205)

@ A popular (and mathematically rigourous)

method is called Gillespie’s Direct Algorithm
(Gillespie 1977)

Gillespie’s Direct
Method

gl.Label all possible events E,, ..., E,

%2.Calculate rate at which each event occurs R, ..., R,
%3.Rate at which any event occurs is R,,,=%; R,
%4.Calcu1ate time until next event

log(U,)

Ot =
R

sum

25.Generate uniform deviate, U,, and set P=U, x R,

26.Event occurs if >
P YR,<P<YR,

§7.Update state, time t=t+dt and return to step 2




Gillespie’s Direct
Method

o Let’s implement this for SIR model, with

~ demography

o Event rates are R=(uN, XY /N, uX, yvY, uY, uz)
® Sum of event frequencies is

R, =2xuN +pXY +vY

. © Time until next event:

ot =
R

log(U,)

sum

o Set P=U, xR,,and find p pE_Rm<PsiRm
o Update variables, time (t = t + dt) and repeat

Stochastic Epidemics
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Characterising
variability

. @Can repeat invasion of pathogen into virgin
. population a number of times and examine

Outbreak size

Outbreak size
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This is referred to as the J-to-U transition

Quantifying

distrip}}tion
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Stochastic Invasion
Threshold
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Important predictions for emerging pathogens: when ¢
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Critical Community
Size
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Pros & Cons

e Gillespie’s Direct Method has many virtues:
e It'sexact

e Straightforward to implement

e Widely known and used

. e But it has one main drawback:
e It's computationally costly when
1. Population size is large

2. There are lots of events (eg models with loss of
immunity, many species etc)

Approximations

® Most commonly used approximation to GDM is so-
. called t-leap method (also due to Gillespie)

e Here, system is updated at fixed time steps of length
T

. @ Assuming rate at which an event occurs is r, then

number of times this event occurs in a small time
interval t is given by Poisson(r, t)

e [Can show GDM recovered as t -> 0]




fixample

. @For SIR system without demography
., Set parameter values and select t
» Set ICs and set time = 0
> while time < Tmax
> Infections = poissrnd(t*beta*X(i)*Y(i)/N)
> Recovery = poissrnd(gamma*Y(i)*t)
» X (i+1) = X(i) — Infections
> Y(i+1) = Y(i) + Infections — Recovery
> time = time + ©
: > end
. @As 1 — 0, this approximation approaches GDM
@ Choice of T is critical
: @ too small and it’s not much faster than GDM
@ yet too big can lead to imprecision and negative variables

Lecture Summary ...

@In reality, inferences about transmission process from
data masked by 3 different kinds of noise:
observation, environmental & demographic

@ Can use Gillespie’s Direct Method

. @Demographic noise important, especially when
making predictions in settings with R, near 1




