Exercise 1. Using the approach outlined in this lab, show that the final epidemic size over a one-year period looks as below. Assume that initially everyone is susceptible and 1 out of 58 million are infectious. The social distancing strategy is in place for 12 weeks and $R_0 = 1.8$ with a mean infectious period of 2.6 days. You can ignore host births/deaths.

First, we load the *deSolve* package, specify parameters and initial conditions, and create a function to solve the social distancing model. For this exercise we use the “closed” SIR model (no demography).

```r
> require(deSolve)
> R0 <- 1.8
> N <- 1
> gamma <- 7/2.6
> beta <- R0*(gamma)/N
> phi <- 0.3333
> D <- 12
> xstart <- c(S=0, I=0, R=0)
> xstart[2] <- 1/58000000
> xstart[3] <- 1-sum(xstart)
> Tmax <- 52
> params <- c(beta=beta, gamma=gamma)
> tau <- 0.1
> times <- seq(0, Tmax, by=tau)
> sir.model.closed <- function (t, x, params) {
+ S <- x[1]
+ I <- x[2]
+ R <- x[3]
+ with(as.list(params), {
+ dS <- -beta*S*I
+ dI <- beta*S*I-gamma*I
+ dR <- gamma*I
+ dx <- c(dS, dI, dR)
+ list(dx)
+ })
+ }
> out <- as.data.frame(ode(xstart, times, sir.model.closed, params, method='ode45', rtol=1e-7))
```

Evaluating the model at $\phi = 0.333$ and initialization times 3, 5, 6 and 7 generates the solution shown in the handout.
color palette
pulp <- c(rgb(101,48,47, maxColorValue=255), #brown
+ rgb(210,202,203, maxColorValue=255), #gray
+ rgb(211,141,101, maxColorValue=255), #peach
+ rgb(223,45,39, maxColorValue=255), #red
+ rgb(250,208,10, maxColorValue=255), #yellow
+ rgb(16,16,18, maxColorValue=255), #black
+ rgb(76,106,147, maxColorValue=255) #blue
+)

plot baseline again
plot(out$time,
+ out$I,
+ type='l',
+ lwd=2,
+ xlab='Time',
+ ylab='Infected',
+ col=pulp[7]) #plot the I variable against time

create a list to store information for the legend
legend.info <- data.frame(T=numeric(0),col=character(0),stringsAsFactors=FALSE)
Tvec <- c(3, 5, 6, 7)
for(i in 1:length(Tvec)){
 T <- Tvec[i]

 out1 <- ode(xstart, # start at initial condition
 seq(0,T,tau), # solve from 0 to T
 sir.model.closed,parms,
 method='ode45',
 rtol=1e-7)

 out2 <- ode(tail(out1,1)[2:4], # start at end of last solution
 seq(T,T+D,tau), # solve from T to T+D
 sir.model.closed,
 c(beta=beta*(1-phi), gamma=gamma), # change beta
 method='ode45',
 rtol=1e-7)

 out3 <- ode(tail(out2,1)[2:4], # start at end of last solution
 seq(T+D, Tmax, tau), # solve from T+D to Tmax
 sir.model.closed,
 params, # reset parameters
 method='ode45',
 rtol=1e-7)

 data <- as.data.frame(rbind(out1, out2, out3))

 lines(data$time,
 data$I,
 col=pulp[i],
 lwd=2)

 legend.info[i,] <- c(T=T, col=as.character(pulp[i]))
}
Solving the problem in the exercise requires evaluating the model over over values of ϕ and T and storing the terminal value for the R class, which contains every individual ever infected. Note: we make use of a convenient function, outer, in the following code to solve the problem more compactly than by looping. However, outer requires a function for which the arguments may be vectors (a “vectorized” function), which we create using the function Vectorize. We use the function image.plot from the fields package to generate the heat map.s

```r
> total.epidemic <- function(T,phi){
+ require(deSolve)
+ + R0 <- 1.8
+ + N <- 1 #population size
+ + gamma <- 7/2.6 #recovery rate (in years)
+ + beta <- R0*(gamma)/N #transmission rate
+ + D <- 12
+ + xstart <- c(S=0, I=0, R=0) #initial conditions, must sum to one
+ + xstart[2] <- 1/58000000
+ + xstart[3] <- 1-sum(xstart)
+ + Tmax <- 52 #integrate for 200 years after transients
+ + params <- c(beta=beta, gamma=gamma) #parameter vector
+ + out1 <- ode(xstart, # start at initial condition
+ + c(0,T), # solve from 0 to T
+ + sir.model.closed,}
```
params,
method='ode45',
rtol=1e-7)

out2 <- ode(tail(out1,1)[2:4], # start at end of last solution
c(T,T+D), # solve from T to T+D
sir.model.closed,
c(beta=beta*(1-phi),
gamma=gamma), # change beta
method='ode45',
rtol=1e-7)

out3 <- ode(tail(out2,1)[2:4], # start at end of last solution
c(T+D, Tmax), # solve from T+D to Tmax
sir.model.closed,
params, # reset parameters
method='ode45',
rtol=1e-7)

total.epidemic <- out3[8] #the last value of R

Tvec <- seq(0.25, 20, length=100)
phivec <- seq(0,0.5, length=100)
data <- outer(Tvec,phivec, Vectorize(total.epidemic))
require(fields)
image.plot(Tvec, phivec, data, xlab='T', ylab=expression(phi))