MATHEMATICAL MODELS OF INFECTIOUS DISEASES

- Pej Rohani & John Drake
- Odum School of Ecology
 University of Georgia

GLOBAL CAUSES OF MORTALITY

Measles & pertussis account for ~300,000 and ~200,000 annual deaths

In low-income countries, 45% of all deaths are from infectious diseases

Total mortality

Infant mortality

Undernutrition has been estimated to be an underlying cause in up to half of all under-five deaths. This estimate will be revised in 2008.

MULTIFACETED APPROACH TO UNDERSTANDING INFECTIOUS DISEASES

Medicine

But these approaches don't address important questions at population level ...

Microbiology

Immunology

Vaccines & Drugs

EMERGING PATHOGENS

SCHOOL OUTBREAK

Boarding School, England Jan 1978

Raises numerous questions:

- What is etiological agent?
- Is it novel?
- Is a vaccine available?

MODELING QUESTIONS I. BASICS

MODELING QUESTIONS II. CONTROL IMPLICATIONS

WHAT IS A MODEL?

- Different types of models:
 - A mathematical/computational model is an abstract model that uses mathematical language to describe the behaviour of a system
 - A Statistical model attempts to describe relationships between observed quantities and independent variables
- Developing a mechanistic model is different from statistical analyses of data

ABSTRACTION

WHAT'S A 'GOOD' MODEL?

- Choice of model depends crucially on focal question and available data (hammer & chisel or pneumatic drill?)
- Use model principally for
 - understanding nature
 - making predictions

JUDGING A MODEL...

- Three fundamental features of models, often opposing forces:
 - Accuracy
 - Capture observed patterns (qualitative or quantitative?) and make predictions
 - Increases with model complexity
 - Transparency
 - Ability to understand model components
 - Decreases with model complexity
 - Flexibility
 - How easily can model be adapted to new scenarios?
 - Decreases with model complexity

REALISM VS TRANSPARENCY

'HOW' DO YOU MODEL?

Analytical Models

Concentrate on problems that can be expressed and analysed fully using analytical approaches.

Problem-based Models

Construct most "appropriate" model and use whatever combination of methods for analysis and prediction.

Ready-Made Software ModelMaker

www.modelkinetix.com/modelmaker/modelmaker.html

GLOBAL SIMULATORS

RESOURCE MATERIALS

- Keeling & Rohani (2008)
- Vynnycky & White (2010)
- Anderson & May (1991)
- Otto & Day (2007)

MATHEMATICAL MODELLING OF INFECTIOUS DISEASES

- Objective I: Setting up simple models
 - Different transmission modes
 - Basic Reproduction Ratio (R₀), Simple Epidemics, Invasion threshold & extinction
 - Stability analysis
- Objective 2: Control
 - Infection management
- Objective 3: Statistical estimation
 - \blacksquare R₀ and other parameters

- Objective 4: Heterogeneities
 - Risk structure
 - Age-structured transmission
 - Realistic pathogenesis
 - Seasonality
- Objective 5: Sensitivity & Variability
 - Stochastic implementation
 - Parameter uncertainty

STEPS IN DEVELOPING A MODEL

- Let's develop a model for Boarding School influenza outbreak
- Some important choices need to be made at outset
- I. What do we want to keep track of?
 - Amount of virus in population?
 - Antibody titre of everyone in population (school)?
 - Cities in which infected people have been found?

CATEGORISING INDIVIDUALS

Pragmatic choice: categorise individuals in population according to their infection status, eg:

- Susceptible
- Infectious
- Recovered/Immune

These are our "system variables"

What model structure?

-- Determined by pathogen biology

2. What model structure?

-- Determined by pathogen biology

- What model structure?
- Depends on what do we know about the pathogen (eg, influenza)
 - It's directly transmitted (aerosol)
 - An acute infection
 - Lifelong immunity (to that strain)

■ Flow between classes/compartments determined by details of host population structure and pathogen biology

3. Deterministic or stochastic?

On average, stochastic simulations identical to deterministic predictions, though individual realizations may be quite different

REALISM VS TRANSPARENCY

- We've settled on a deterministic SIR model now what?
- How do we write down some equations to describe spread of 'flu in this population?
- Assign each system variable a unique Roman letter, eg:
 - Susceptible, S (proportion) or X (number)
 - Infectious, I (proportion) or Y (number)
 - Recovered/Immune, R (proportion) or Z (number)
- Assign parameters a unique (typically Greek) letter, eg:
 - Contact rate, κ
 - \blacksquare Pathogen infectivity, \vee

VERY IMPORTANT!

- NOTHING SPECIAL ABOUT MY CHOICE OF NOTATION USE OF PARTICULAR LETTERS HIGHLY IDIOSYNCRATIC
- DENOTE SAME VARIABLES OR PARAMETERS.
- YOU CANNOT AUTOMATICALLY ASSUME THAT β IN TWO DIFFERENT PAPERS MEANS THE SAME THING!

3. MODEL EQUATIONS

BATH TUB EXAMPLE

- Let W(t) be amount of water in bathtub (ml)
- Need a <u>dynamic equation</u> that tells us how W(t) will change through time

- * Consider a small time interval, δt
- * Then,

 $W(t+\delta t) = W(t) + Inflow rate \times elapsed time - Outflow rate \times elapsed time$

BATH TUB EXAMPLE

$$W(t + \delta t) = W(t) + I \times \delta t - O \times \delta t$$

* Rearrange

$$\frac{W(t+\delta t) - W(t)}{\delta t} = I - O$$

- * Left hand side is a <u>difference quotient</u> for derivative of W with respect to time
- * Let $\delta t \to 0$ $\frac{dW}{dt} = I O$

MANY BATHTUBS = COMPARTMENT MODELS

MODEL EQUATIONS

If we knew X_t and Y_t , could we predict $X_{t+\delta t}$ and $Y_{t+\delta t}$, where δt is some (very short) time later?

$$X_{t+\delta t} = X_t - (v\kappa \delta t) X_t Y_t / N$$

$$Y_{t+\delta t} = Y_t + (v\kappa \delta t) X_t Y_t / N - (\gamma \delta t) Y_t$$

And

$$Z_{t+\delta t} = Z_t + (\gamma \delta t) Y_t$$

 ν is probability of transmission given contact κ is contact rate

BASIC QUESTIONS?

$$\begin{aligned} X_{t+\delta t} &= X_t - (\beta \ \delta t) \ X_t \ Y_t / N \\ Y_{t+\delta t} &= Y_t + (\beta \ \delta t) \ X_t \ Y_t / N - (\gamma \ \delta t) \ Y_t \\ Z_{t+\delta t} &= Z_t + (\gamma \ \delta t) \ Y_t \end{aligned}$$

Average infectious period given by I/γ [why?]

MEAN LIFETIME CALCULATION

Consider recovery of a single infectious individual

$$I(t) = e^{-\gamma t}$$

$$1 = \int_{0}^{\infty} ce^{-\gamma t} dt = \frac{c}{\gamma}$$

Hence, probability density function is $\gamma e^{-\gamma t}$

$$\tau = \int_0^\infty t\gamma e^{-\gamma t} dt = \frac{1}{\gamma}$$

For a random variable x, with probability density function $f(x)\int_0^\infty th(x)dx$ given by

AN ODE MODEL

Consider the equation describing Susceptible dynamics

$$X_{t+\delta t} = X_t - (\beta \delta t) X_t Y_t / N$$

Re-write as

$$X_{t+\delta t} - X_t = - (\beta \delta t) X_t Y_t/N$$

$$(X_{t+\delta t} - X_t)/\delta t = \beta X_t Y_t/N$$

By fundamental theorem of calculus, as $\delta t \rightarrow 0$,

$$dX/dt = -\beta XY/N$$

AN ODE SIR MODEL

$$\frac{dX}{dt} = -\beta X \frac{Y}{N}$$

$$\frac{dY}{dt} = \beta X \frac{Y}{N} - \gamma Y$$

$$\frac{dZ}{dt} = \gamma Y$$

- o By definition, X+Y+Z=N
- These equations describe rates of change in state variables
- \circ Parameters β , γ represent instantaneous rates

AN ODE SIR MODEL

In my lectures (as in K&R 2008), variables X, Y & Z refer to the numbers of individuals in each class.

Variables S, I, & R refer to the proportions of the population in each class

These equations describe rates of change in state variables

Parameters β , γ represent instantaneous rates

AN ODE SIR MODEL

$$\frac{dX}{dt} = -\beta X \frac{Y}{N}$$

$$\frac{dY}{dt} = \beta X \frac{Y}{N} - \gamma Y$$

$$\frac{dZ}{dt} = \gamma Y$$

Important to notice: transmission rate is assumed to depend on frequency of infecteds in population (Y/N). Hence, this is frequency-dependent transmission

SIMULATING EPIDEMICS

MODEL DYNAMICS

- As parameters are varied, model predicts different outcomes
- Can we anticipate trajectories without resorting to numerical integration?
- Question: under what conditions will an infectious disease invade a system?

THE INVASION THRESHOLD

- When can an infectious disease invade a population?
- Initial conditions: X(0) = N, Y(0) = 1, Z(0) = 0
- Invasion only if dY/dt > 0
- ie, $\beta XY/N \gamma Y > 0 \Rightarrow Y(\beta X/N \gamma) > 0$
 - If and only if $X/N > \gamma/\beta$
 - Since X=N, requires $1 > \gamma/\beta$
 - Or $\beta/\gamma > 1$

Kermack & McKendrick (1927)

BASIC REPRODUCTIVE RATIO, Ro

- \blacksquare Ratio β/γ gives number of cases before infected individual recovers
- Universally referred to as R₀ or Basic Reproductive Ratio
- Definition: Number of secondary cases generated by a typical infected in an entirely susceptible population

ROAND MODEL PARAMETERS

THE DEATH OF AN EPIDEMIC

■ In SIR equations, let's divide equation for dX/dt by dZ/dt:

$$dX/dZ = - (\beta XY/N)/(\gamma Y)$$
$$= - R_0 X/N$$

- Integrate with respect to Z
 - $X(t) = X(0) e^{-Z(t) R_0/N}$
- When epidemic is over, by definition, we have $X(\infty), Y(\infty)$ (=0), and $Z(\infty)$
- $X(\infty) = N Z(\infty) = X(0) e^{-Z(\infty) R_0/N}$

THE DEATH OF AN EPIDEMIC

- So, N $Z(\infty)$ X(0) e $^{-Z(\infty)}$ R₀/N = 0
- Solve this numerically ('transcendental' equation)

Epidemic dies out because there are too few infectives, not because of too few susceptibles

Kermack & McKendrick (1927)

SIMPLE EPIDEMICS

	β	I/¥	R_0
"Measles"	886 /yr	0.019 yr	17
''Influenza''	180 /yr	0.011 yr	2
"Chickenpox"	315 /yr	0.022 yr	7
''Rubella''	200 /yr	0.025 yr	5

FREQUENCY- OR DENSITY-DEPENDENT TRANSMISSION?

- Assumed contact rate, κ, constant: 'mixing' is independent of population size: frequency-dependent transmission. Reasonable?
- If we assume contact rate to be κN (increases with 'crowding'), then transmission rate is
 - \circ dX/dt = - β XY
- Called density-dependent transmission

DOES IT MATTER?

- Again, pathogen invasion if dY/dt > 0
- If initially everyone susceptible (X=N), $\beta NY \gamma Y > 0 \Rightarrow Y(\beta N \gamma) > 0$
- In this case, we define $R_0 = \beta N/\gamma$, so need $R_0 > 1$
- Hence, for any particular β and γ , there's now a <u>threshold population</u> <u>density</u> required for invasion

INCORPORATING VIRULENCE

 \blacksquare Assume infectious individuals die at rate α

$$\frac{dY}{dt} = \dots - \gamma Y - \alpha Y$$

TRANSMISSION & Ro

Density Dependent

$$\beta$$
=0.0426, γ =24, α =18, μ =0.02 N_T = 1000

Frequency Dependent

 β =426, γ =24, α =18, μ =0.02 No invasion threshold

FD transmission → pathogen can wipe out host

WHAT SHOULD WE DO?

- If population size doesn't change, FD & DD equivalent ($\beta_{FD} = N \times \beta_{DD}$)
- Otherwise:
 - Frequency-dependence generally more appropriate in large populations with heterogenous mixing, STDs, vector-borne pathogens
 - Density-dependence representative of wildlife & livestock diseases (especially with smaller population sizes)