ECTURE 2

Equilibrium Stability Analysis &
Next Generation Method
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L ONG-TERM DYNAMICS

» S0 far, looked at start and end of a simple epidemic

* In other settings, would like to know systems dynamics in
the long run

» Use equilibrium analysis



STDs AND SIS MODEL
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Simple model for a non-immunising
infection, that Is only cleared through
treatment

dX Y
g Y - pX N Recall that N=X+Y, so we can
dY Y rewrite this system as
a PN ay Y
t
Sl :B(N—Y)N — A

System reduced to a single dt
state variable B

b

What is Ry here? fo =3



EQUILIBRIUM ANALYSIS

- Can study properties of model at equilibrium (setting rates
of change = 0)

- Setting dY/at =0, we get
B(N-Y)Y/N -yY =0,
SoY(B(N=-Y)/N-v) =0

- Satisfied wheneverY=0 orY=N - NY/B = N(I-1/Ry)
- Egm points are: 0 and N(I-1/Ro)
- So, under what circumstances do we see each state!



STABILITY ANALYSIS

+ 50, we have two equilibria — one where pathogen persists
and one where It Is absent

- What are conditions that determine when we observe
one or other!

- For answer to this question, we need to carry out linear
stability analysis

- Basic idea Is to start at an equilibrium point and introduce
a slight change (a ‘perturbation’) and establish whether this
perturbation grows (unstable) or decays (stable)



EQUILIBRIUM STABILITY
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LINEAR STABILITY ANALYSIS: [-D CASE

* Assume we have a single state variable

dY
S = (V)

* 50, at equilibrium point Y*, {(Y*)=0

* Now, we're interested In knowing what happens If we
slightly ‘perturb’ equilibrium

R RS0 (/—<71 "), substitute inf ODE

8 ) dy
dt T

A o



LINEAR STA

BILITY ANALYSIS: |-

CASE

- 1(Y*+y) can be expressed as a laylor expansion

dy ;
)

Fuf (V) ) +

- Note: [ means derivative of [ with respect to Y




TAYLOR EXPANSION

1(Y*+y)
fOY*)




LINEAR STABILITY ANALYSIS: [-D
CASE

- 1(Y*+y) can be expressed as a laylor expansion
dy

— =P +uf V) + 9" (Y

-~ N f’ means derivative of [ with respect to Y
- We end up with a linear ODE, solution to which is

y(t) = y(0)ef ¥t

- f'(Y*) is ‘eigenvalue’ -- from now on, we'll call it A
- Our perturbation, y(t), will
Grow exponentially if A >0 (equilibrium Unstable)

Decay exponentially if A <O (equilibrium Stable)



oio MTODER

dY

)

dr 6Y(1

=—vY
N}Y

- System Is In equilibrium as long as

it 0 (or X* = N) ..1e D
>orY* = N(I-y/B) = N(I-1/

e

R0)

F(Y) = BY(1- 1) =Y
rory =) _g_2s> 4




oio MTODER

Y
f/(Y):ﬁ—Qﬁﬁ—W

® So, when Y*=0,
10) = B~y
=<0 if y>p or Ro<1

® When Y*=N(1-v/p),

g Dty
=<0 if >y or Ro>1



STABILITY ANALYSIS

* | et's do this In general terms

* [For a system containing n state variables, we have

dN .
B LN, N) =L

= Now, we perturb equilibrium (N = Ni"+xi, xi<<N;"), Taylor
expand fi() and ignore higher order terms (xi, xix; etc)

= Growth of perturbations (X, 1=1,n) given by linear set of
ODEs

Keeling & Rohani (2008) pp30-3 |
Excellent texts: Strang (1986) & Kreyszig (2010)



B MODEL WITH DEMOGRARFSES

* Move on to thinking about recurrent epidemics, facilitated by replenishment of susceptible
pool via naive births

Tmnsmzsszon Reco ver
ds Y

PR POl —us births

I Susceptible Recovered
— =BS5S -(y +n)/

s PST—(y + W)

o death death death
.
/ *w 1s both per capita host birth and death rate
S+|+R =1 RO = 6 *Population size assumed constant

G- )

*Host life expectancy given by 1/



EQUILIBRIUM ANALYSIS - SIR

e Get 5* = |/Roand I* = w/P (Ry-1) (check)

* 50, at endemic equilibrium, we have

L7 L

S* ¥ R*) =
( ) R, P R, P )

This equilibrium is only (biologically) feasible as long as R,>1

Note: we also have (S*,1*,R*)=(1,0,0)
This is called the disease-free equilibrium (DFE) stable only if Rop < 1




ADDING A LATENT PERIOD: SEIR MODE

* Incorporating a latent period takes into account transition
from infected but not yet infectious 1o infectious

§=M—l351—u5
dt

d—E=BSI—(0+pL)E
dt

ﬂ=0E—(Y+M)I
dt

e R
e Note:S+E+|+R=1
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ualitative ways, this addition makes little difference
tem still possesses two equilibria; DFE (1,0,0) and an
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EXp

emic equilibrium
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INVASION PHASE: SIR

* Consider dl/dt for SIR model, evaluated at disease free equilibrium

dl

o = BSI — (u+)1

=pI = (p+)1

e Can solve this wrt t

Isir ~ I(0) X B— (47t

Isir ~ I1(0) x oV (Ro—1)t



INVASION PHASE: SEIR

* |f we do exactly same thing for SEIR model (straightforward but more
involved), we get

Isgrr = I(O) - e% (—(U—I—fy)—l—\/4(30_1)704_(7_'_0)2)

This seems pretty unwieldy. Let's see what happens If we assume y=0
Ispir ~ I(0) x o(VRo—1)vt

S0, In comparison with SIR model, invasion speed in SEIR model scales
with v/Ro



SEIR

THE INVASION PHASE
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DERIVING EXPRESSION FOR
o

. Examine eigenvalues at disease-free equilibrium
e Show system has two eigenvalues, A=-u and A=(y+u)

(B/Cy+u)-1)

e Aslong as B/(yt+w)> 1, disease-free equilibrium is
unstable and pathogen successfully invades

ERSICE niext generation method ™ or “Specirall Radiys
method” (see Diekmann et al. 1990; |. Math. Biol. and
Heffernan et al. 2005; /. R Soc. Interface)



NEXT GENERATION METHOD

» Useful when host population can be split into disjoint categories
(representing epidemiological complexities)

» Establishes # of transmissions generated by typical infected In
susceptible population

SBERElc = 1X,, X, ..., X} represent n Infected host
compartments

SERIETeEY = 1/, Y5, -, Y} FEpresent m other host
compartments



NEXT GENERATION METHOD

» F = rate at which new infecteds enter compartment |

* V. = transfer of individuals out of minus into ith

compartment



FOOSUMP TOINS

|.‘.Fi(O,y) = Vi(Oy) =0 Vv y>0
(no new Infections If no Infecteds)

H e r—=0y ¢ = Oand y, = 0
(no new Infections If no Infecteds)

I, vioyy <ovy =0
(I compartment empty, can only have inflow)

|\/ 2iVilxy) 20Vvx =0andy =0
(sum Is net outflow)

\/. System y' = G(0,y) has unique asymptotically stable equilibrium, y*



S MO

ere,n=1,m=2, x=l,y = (S5R)

dsS

i 5SI— S Fy = BSI

dl Vi = (p+ )1

— = BST —~I — ul
dt e Gi = — oS — o

Cii—}::y[—,uR Go =yl — puR



LINEARIZATION

General system

A .
y = ‘F,L(aj’ y) — Vz(aj, y) |:1,..., N
dt
dy;
al?é7 = Gj(z,y) 1=
can decouple x-system from y-system dr _ (F —V)x

when close to disease-free equilibrium, y*  dt

WacreEand Y are n x n matrices:

e A
Fz’j_@xj(ovy) ‘/;J_amj(()’y)




NEXT GENERATION METHOD

dx
e —
i ( )T

f F=0 (no new infections), x = x(0)e™*,

-xpected number of secondary cases produced by an initial case Is

/OOO Fe "iz(0)dt = F(/OOO ewdt>az(0) = FV~—'z(0)

Next Generation Matrix, K=FV-!.

—ntry Kj represents expected number of secondary cases In
compartment | by an individual in compartment |




NEXT GENERATION METHOD

* Next generation operator (FV-') gives rate at which
individuals iIn compartment j generate new Infections In
compartment i times average length of time individual
spends In single visit to compartment |

* R, IS given by dominant eigenvalue (or ‘'spectral radius’, p)
of FV-',ie Ro = p(FV-") = p(K)



S MO

ere,n=1, m=2,x=l,y = (SR
% =4 BSI S &
U S
i Vi = (p+ 7)1
B R G =p— BSI—uS
o Go =] — pR
- OH AT )
B 5 et
Hence, Ry = p

(1 + )



NEXT GENERATION METHOD

* SEIR equations (again):
as

e

* =BIS-(W+0)E | 2l
dt '— We deal with these two
dl infected’ compartments
j—()'E—(M+y)] P
| [

How do we use Next Generation Method to
work out Ry for this model?



NEXT GENERATION METHOD

* Write down matrix F, which defines rate of new infections In
different compartments, differentiated with respect to E and
| and evaluated at disease-free equilibrium

= 0551 ds

Fy =0 jf
E
i ( 8(551) 8(BSI) ) Jf o IHS—(M +G)E
b
0 0

=u—(pl+w)s

dl

) dt

=0E - (uw+vy)/

P-4 =



NEXT GENERATION METHOD

* Now, we write a new matrixV that defines rate of
transfer of infectives from one compartment to another

V1:(,u—|—a)E dS—M—(ﬁI+M)S
Vo = (u+7v)I —oE j]g
E=MS_(M+O)E
E (uto 0
. ( O ,u—l—v) ZZ—OE-(MW)I



NEXT GENERATION METHOD

o Recall that inverse of (a b\_ S 1 ) d _b\T
¢ d}i ad —=bc\-c a]
S10), W e
1 Sy [ oeayees- d
— L p+v)(p+o
£V v (O 0) o i
(b+v)(pt+o) (u+v)(u

4




NEXT GENERATION METHOD

o Bo B(p+o)
FV 3 — ( (u+v)0(u+0) (u+v)0(u+0) )

This is Next Generation Operator. Ro given by largest
eigenvalue of this matrix:

Bo A B(pto)
FV 1 = | (etn(pto) (b+7) (pto)
0 0— A
____bo
"y futo)

Check: o =0, Ry = B/(u+y) as for SIR model



pEC TURE SUMMART S

* Linear Stability Analysis
 SIR/SEIR endemic egm stable it Ry > |

* Approach to egm via damped oscillations
e (Period given by 21t v/(AG) )
* Adding latent period, SEIR model

* Affects speed of epidemic take-off

« Next Generation Method to derive expression for R, for
any model



CLASS CHALLENGE: HIV PROGRESSION

Model needs to consider

infectivity of different stages

and respective durations

Bp

> 6 > infection

1/6|D 1/6A

ppppp - Asynmptomatic Phase

CD4 T CELL
COUNT

S—

0 PR 0 B8 B i i i i i ! ! Il I '

0 6 1271 2 3 4 5 6 7 8 9 10 11
WEEKS YEARS

Fauci et al. 1995: Ann Intern Med

Equations:
as _
L (1, +B1)S
dl,
(ﬁpl +ﬁA )S_éplp Show:
_Br  Ba
di-él -0,1, R0_5P+5A

dt



HINT: YOU'LL NEED TO KNOW

@i g el
=d;dy, —d;,d,,
d, A,
£
( \ ( \
a, 4y 1 dy, —dp

\ d, dy / a11a22_a12a21\ —d, 4y /
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