Model-Data Interface

Parameter estimation and statistical inference

Parameter estimation

We've seen that basic reproductive ratio, R₀, is a very important quantity

How do we calculate it?

 In general, we might not know (many) model parameters. How do we achieve parameter estimation from epidemiological data?

Review some simple methods

1a. Final outbreak size

• From lecture 3, we recall that at end of epidemic:

■
$$S(\infty) = 1 - R(\infty) = S(0) e^{-R(\infty) R_0}$$

 So, if we know population size (N), initial susceptibles (to get S(0)), and total number infected (to get R(∞)), we can calculate R₀

$$R_0 = -\frac{\log(1 - R(\infty))}{R(\infty)}$$

Note: Ma & Earn (2006) showed this formula is valid even when numerous assumptions underlying simple SIR are relaxed

1. Final outbreak size

Worked example:

Influenza epidemic in a British boarding school in 1978

N = 764
X(0) = 763

$$Z(\infty) \sim 700, 725, 750$$

$$R_0 \sim 2.66, 3.06, 3.89$$

1b. Final outbreak size

• Becker showed that with more information, we can also estimate R_{\cap} from

$$R_0 = \frac{(N-1)}{C} \ln \left\{ \frac{X_0 + \frac{1}{2}}{X_f - \frac{1}{2}} \right\}$$
 (~1.66)

- Again, we need to know population size (N), initial susceptibles (X₀), total number infected (C)
- · Usefully, standard error for this formula has also been derived

$$SE(R_0) = \frac{(N-1)}{C} \sqrt{\sum_{j=X_f+1}^{X_0} \frac{1}{j^2} + \frac{CR_0^2}{(N-1)^2}}$$

Recall this?

Small aside: mean age at infection

- An epidemiologically interesting quantity is mean age at infection – how do we calculate it in simple models?
- From first principles, it's mean time spent in susceptible class
- At equilibrium, this is given by $1/(\beta I^*)$, which leads to

$$A \approx \left(\frac{1}{\mu(R_0 - 1)}\right)^{\frac{1}{j}}$$

- This can be written as R_0 -1 ≈ L/A (L= life expectancy)
- Historically, this equation's been an important link between epidemiological estimates of A and deriving estimates of R_0

2. Independent data

- For S(E)IR model, we can calculate average length of time it takes for an individual to acquire infection (assuming born susceptible)
- Expression for Mean Age at Infection is

$$A \approx \frac{1}{\mu R_0}$$
 $\Rightarrow A \approx \frac{L}{R_0}$ $\Rightarrow R_0 \approx \frac{L}{A}$

R₀ is mean life expectancy (L) divided by mean age at infection (A)

Measles Age-Stratified Seroprevalence

Mean age at infection (A) is \sim 4.5 years Assume L \sim 75, so R $_{\circ}$ \sim 16.6

Historical significance

Anderson & May (1982; Science)

Table 2. The intrinsic reproductive rate, R_0 , and average age of acquisition, A, for various infections [condensed from (25); see also (36)]. Abbreviations: r, rural; u, conurbation.

Disease	Average age at infection, A (years)	Geographical location	Type of community	Time period	Assumed life expectancy (years)	R_0
Measles	4.4 to 5.6	England and Wales	r and u	1944 to 1979	70	13.7 to 18.0
	5.3	Various localities in North America	r and u	1912 to 1928	60	12.5
Whooping cough	4.1 to 4.9 4.9	England and Wales Maryland	r and u u	1944 to 1978 1908 to 1917	70 60	14.3 to 17.1
Chicken pox	6.7	Maryland	u	1913 to 1917	60	9.0
	7.1	Massachusetts	rand u	1918 to 1921	60	8.5
Diphtheria	9.1 11.0	Pennsylvania Virginia and New York	u rand u	1910 to 1916 1934 to 1947	60 70	6.6
Scarlet	8.0	Maryland	u	1908 to 1917	60	7.5
fever	10.8	Kansas	r	1918 to 1921	60	5.5
Mumps	9.9	Baltimore, Maryland	u	1943	70	7.1
	13.9	Various localities in North America	r and u	1912 to 1916	60	4.3
Rubella	10.5 11.6	West Germany England and Wales	r and u	1972 1979	70 70	6.7
Poliomyelitis	11.2	Netherlands	r and u	1960	70	6.2
	11.9	United States	r and u	1955	70	5.9

3. Epidemic Take-off

A slightly more common approach is to study the epidemic take off

Recall from linear stability analysis that

$$I_{SIR} \approx I(0) \times e^{(R_0 - 1)\gamma t}$$

Take logarithms

$$\log(I_{SIR}) = \log(I(0)) + (R_0 - 1)\gamma t$$

So, regression slope will give R₀

3. Epidemic take-off

Back to school boys

Epidemic take-off

Vynnycky et al. (2007)

Vynnycky et al. (2007)

Variants on this theme

Recall

$$\log(I_{SIR}) = \log(I(0)) + (R_0 - 1)\gamma t$$

- Let T_d be 'doubling time' of outbreak
- Then,

$$\star R_0 = \log(2) / T_d \gamma + 1$$

4. Likelihood & inference

- We focus on random process that (putatively) generated data
- A model is explicit, mathematical description of this random process
- "The likelihood" is probability that data were produced given model and its parameters:

L(model | data) = Pr(data | model)

 Likelihood quantifies (in some sense optimally) model goodness of fit

- Assume we have data, D, and model output, M (both are vectors containing state variables). Model predictions generated using set of parameters, θ
- Transmission dynamics subject to
 - "process noise": heterogeneity among individuals, random differences in timing of discrete events (environmental and demographic stochasticity)
 - <u>"observation noise"</u>: random errors made in measurement process itself

- If we ignore process noise, then model is deterministic and all variability attributed to measurement error
- Observation errors assumed to be sequentially independent
- Maximizing likelihood in this context is called 'trajectory matching'

- Data, D
- Model output, M
- Parameters, θ

• If we assume measurement errors are normally distributed, with mean μ and variance σ^2 then

$$L(M(\theta) | D) = \prod_{i} \frac{1}{\sqrt{2\pi\sigma^{2}}} e^{\frac{(D_{i} - M_{i})^{2}}{2\sigma^{2}}}$$

- Data, D
- Model output, M
- Parameters, θ

Often easier to deal with Log-likelihoods:

$$\log(L(M(\theta) | D)) = -\frac{n}{2}\log(2\pi\sigma^{2}) - \frac{1}{2\sigma^{2}}\sum_{i}(D_{i} - M_{i})^{2}$$

- Under such conditions, Maximum Likelihood
 Estimate, MLE, is simply parameter set with smallest deviation from data
- Equivalent to using least square errors, to decide on goodness of fit
 - Least Squares Statistic = SSE = $\Sigma(D_i M_i)^2$
- Then, miminise SSE to arrive at MLE

Trajectory matching

Trajectory matching

Model estimation: Influenza outbreak

- •Systematically vary β and γ , calculate SSE
- Parameter combination with lowest SSE is 'best fit'

Model estimation: Influenza outbreak

Best fit parameter values:

- 1. β = 1.96 (per day)
- 2. $1/\gamma = 2.1 \text{ days}$
- $3. R_0 \sim 4.15$

Generally, may have more parameters to fit, so grid search not efficient

Nonlinear optimization algorithms (eg Nelder-Mead) would be used

How do we relate SSE to logLik?

Model estimation: Influenza outbreak

Model estimation: Influenza outbreak

Maximum Likelihood Estimates:

- 1. β = 1.96 (per day)
- 2. $1/\gamma = 2.1 \text{ days}$
- 3. R₀ ~ 4.15

Recall 2 log-likelihood units indicate significant difference

Can use likelihood profiles to put confidence intervals on estimates

β=1.96 (1.90,2.04) γ=0.47 (0.43,0.50)

Model comparison

- How to compare models with different number of estimated parameters?
- Commonly use Akaike's Information Criterion
- AIC = 2 p 2 logLik, where p is number of estimated parameters for model
- rule-of-thumb: if AIC difference <
 2, models indistinguishable

	SIR	Model 2
β	1.96 (1.90,2.04)	
γ	0.47 (0.43,0.50)	
logLik	-60.95	
AIC	125.9	

Likelihood surface

When likelihood surface is somewhat complex, success of estimation using gradient-based optimization algorithms (eg Nelder-Mead) will depend on providing a good initial guess

Caveat

- In boarding school example, data represent number of boys sick ~ Y(t)
- Typically, data are 'incidence' (newly detected or reported infections)
- Don't correspond to any model variables
- May need to 'construct' new information:
 - $dC/dt = \gamma Y$ diagnosis at end of infectiousness
 - $dC/dt = \beta XY/N$
- Set $C(t+\Delta t) = 0$ where Δt is sampling interval of data

Lecture Summary ...

- R₀ can be estimated from epidemiological data in a variety of ways
 - Final epidemic size
 - Mean age at infection
 - Outbreak exponential growth rate
 - Curve Fitting
- In principle, variety of unknown parameters may be estimated from data

Further, ...

- 1. Include uncertainty in initial conditions
 - We took I(0) = 1. Instead could estimate I(0) together with β and γ (now have 1 fewer data points)
- 2. Explicit observation model
 - Implicitly assumed measurement errors normally distributed with fixed variance, but can relax this assumption
- 3. What is appropriate model?
 - SEIR model? (latent period before becoming infectious)
 - SEICR model? ("confinement to bed")
 - Time varying parameters? (e.g. action taken to control spread)

Further, ...

- 4. Assumed model deterministic -- how do we fit a stochastic model?
 - Use a 'particle filter' to calculate likelihood
- 5. Can we simultaneously estimate numerous parameters?
 - More complex models have more parameters... estimate all from 14 data points? ⇒ identifiability
- 6. More complex models are more flexible, so tend to fit better
 - How do we determine if increased fit justifies increased complexity? ⇒ information criteria