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Raises numerous questions: 

• What is etiological agent? 

• Is it novel? 

• Is a vaccine available?
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Vaccines & Drugs

Medicine

Microbiology

Immunology
Genomics

But these approaches don’t address 
important questions at population level ...

Multifaceted approach to understanding 
infectious diseases
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What 
determines 
invasion?

What does  
growth rate 
tell us?

Why does 
epidemic 
turn over?

Why did it 
go 
extinct?

Modeling questions I.  
Basics



When is best 
to implement 
controls?

How 
drastic?

Random or 
aimed at 
age/core 
group?

How to 
prevent 
invasion/
reinvasion?

Is it 
evolving

Drugs, 
Vaccines or 
other control 
measures?

How to 
prevent spatial 
spread?

Probability of 
invasion or 
extinction

Modeling questions II. 
Control Implications



Emerging pathogens



What is a model?
• Different types of models: 

• A mathematical/computational model is an abstract 
model that uses mathematical language to describe 
behaviour of a system  

• A Statistical model attempts to describe 
relationships between observed quantities and 
independent variables 

• Developing a mechanistic model is different from 
statistical analyses of data



Reality Conceptualization

Abstraction

Purpose Components

Assumptions Limitations Validation

Interpretation

Abstraction



What’s a ‘Good’ Model?

• Choice of model depends crucially on focal 
question and available data (hammer & chisel or 
pneumatic drill?) 

• Use model principally for 
• understanding nature 
• making predictions



Judging a Model…
• Three fundamental features of models, often opposing forces: 

• Accuracy 
• Capture observed patterns (qualitative or quantitative?) and 

make predictions 
• Increases with model complexity 

• Transparency 
• Ability to understand model components 
• Decreases with model complexity 

• Flexibility 
• How easily can model be adapted to new scenarios? 
• Decreases with model complexity



Solution tools
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Ready-Made Software 

ModelMaker 

www.modelkinetix.com/modelmaker/
modelmaker.html

Analytical Models 

Concentrate on problems that can be expressed 
and analysed fully using analytical approaches

Problem-based Models 

Construct most “appropriate” model and use 
whatever combination of methods for analysis and 
prediction

‘How’ do you Model?

http://www.modelkinetix.com/modelmaker/modelmaker.html
http://www.modelkinetix.com/modelmaker/modelmaker.html


Global simulators



Resource Materials
• Keeling & Rohani (2008) 

• Vynnycky & White (2010) 

• Anderson & May (1991) 

• Otto & Day (2007) 

• Diekmann et al. (2012)



Modelling Infectious Diseases

Objective 1: Setting up simple models  
Different transmission modes  

Basic Reproduction Ratio (R₀), 
Simple Epidemics, Invasion 
threshold & extinction 

Stability analysis 

Objective 2: Control 
Infection management 

Objective 3: Statistical estimation  
R0 and other parameters

Objective 4: Heterogeneities  
Risk structure 
Age-structured transmission 
Realistic pathogenesis 
Seasonality 

Objective 5: Sensitivity & Variability 
Stochastic implementation 
Parameter uncertainty



Formulate problem/objectives

Conceptual model diagram

Dynamic equations

Computer code

Steps in Developing a 
Model



The simplest models

• Let’s develop a model for Boarding School 
influenza outbreak 

• Some important choices need to be made at 
outset 

1. What do we want to keep track of? 
• Amount of virus in population? 
• Antibody titre of everyone in population (school)? 
• Cities in which infected people have been found?



Exposed/latent Infectious Recovered/Immune Infection statusSusceptible

Healthy Incubating Diseased Clinical status

Incubating
Infectious, 

latent

Infectious, 

symptomatic

Infectious, 

quarantined

Categorising individuals



The simplest models

• Pragmatic choice: categorise individuals in population according 
to their infection status, eg: 

• Susceptible 
• Infectious 
• Recovered/Immune

These are our 
“system variables”



The simplest models
2. What model structure?   

-- Determined by pathogen biology

Susceptible Infectious

Recovered

SI – signifies fatal infection

Susceptible Infectious SIR – recovery after infection

RecoveredSusceptible Infectious SEIR – latencyExposed

Susceptible Infectious SIS – no immunity elicited



The simplest models
2. What model structure?   

-- Determined by pathogen biology

Carrier

Susceptible Infectious
SIR – with carriers

RecoveredSusceptible Infectious

Vectored transmission

Exposed

Recovered

SusceptibleInfectious Exposed



The simplest models
• What model structure? 
• Depends on what do we know about the pathogen (eg, influenza) 

• It’s directly transmitted (aerosol) 
• An acute infection 
• Lifelong immunity (to that strain)

Susceptible Infectious Recovered

Transmission Recovery



The simplest models

• Flow between classes/compartments determined by details of host 
population structure and pathogen biology 

• Host population size 
• Contact rates 
• Pathogen infectivity

These are our 
“parameters”

Susceptible Infectious Recovered

Transmission Recovery



The simplest models

Deterministic
50 independent 
stochastic 
realizations

On average, stochastic simulations identical to deterministic 
predictions, though individual realizations may be quite different

• Deterministic or Stochastic?



Solution tools
Homogeneous

Structured

Network

Multi-Scale

Agent-Based

Realism Vs Transparency



The simplest models
• We’ve settled on a deterministic SIR model – now what? 

• How do we write down some equations to describe spread of ‘flu in 
this population? 

• Assign each system variable a unique Roman letter, eg: 
• Susceptible, S (proportion) or X (number) 
• Infectious, I (proportion) or Y (number) 
• Recovered/Immune, R (proportion) or Z (number) 

• Assign parameters a unique (typically Greek) letter, eg: 
• Contact rate, κ 
• Pathogen infectivity, ν



Very important!
• NOTHING SPECIAL ABOUT MY CHOICE OF NOTATION – 

USE OF PARTICULAR LETTERS HIGHLY 
IDIOSYNCRATIC  

• OTHER AUTHORS MAY USE DIFFERENT LETTERS TO 
DENOTE SAME VARIABLES OR PARAMETERS. 

• YOU CANNOT AUTOMATICALLY ASSUME THAT β IN 
TWO DIFFERENT PAPERS MEANS THE SAME THING!



3. Model equations



Bath tub example
• Let W(t) be amount of water in 

bathtub (ml) 

• Need a dynamic equation that tells 
us how W(t) will change through 
time

Water outflow 
rate, O(t)

Water inflow 
rate, I(t)

Consider a small time interval, δt 

Then, 

W(t+ δt) = W(t) + Inflow rate × elapsed time - Outflow rate × elapsed 
time



Water outflow 
rate, O(t)

Water inflow 
rate, I(t)

Rearrange

W (t+ �t) = W (t) + I ⇥ �t�O ⇥ �t

W (t+ �t)�W (t)

�t
= I �O

Left hand side is a difference quotient for derivative of W 
with respect to time 

Let δt → 0
dW

dt
= I �O

Bath tub example



Many Linked bath tubs 
= compartment models



Model equations
• If we knew Xt and Yt, could we predict Xt+δt and Yt+δt, 

where δt is some (very short) time later? 

 Xt+δt = Xt – Transmission 
 Yt+δt = Yt + Transmission

• Transmission rate 
per susceptible

∝ Contacts x P(Infectious) x P(Transmission)
= ⇥�t ⇥Yt

N
⇥⌫

= ⌫
Yt

N

= �
Yt

N



Model equations
• If we knew Xt and Yt, could we predict Xt+δt and Yt+δt, 

where δt is some (very short) time later? 

 Xt+δt = Xt – Xt (β δt) Yt/N 
 Yt+δt = Yt + Xt (β δt) Yt/N - Recovery

• Recovery assumed at constant rate, Ɣ



Basic questions?

 Xt+δt = Xt – (β δt) Xt Yt/N 
 Yt+δt = Yt + (β δt) Xt Yt/N - (γ δt) Yt  
 Zt+δt = Zt + (γ δt) Yt  

•Average infectious period given by 1/γ [why?] 

β=νκ



Hence, probability density function is γe-γt

=
1

�

For a random variable x, with probability density function f(x), the mean is given by 
Z 1

0
xf(x)dx

I(t) = e��t

1 =

Z 1

o
ce��tdt =

c

�

Consider recovery of a single infectious individual:

Mean life time calculation



An ODE model
• Consider equation describing Susceptible dynamics 
 Xt+δt = Xt – (β δt) Xt Yt/N 

• Re-write as 
 Xt+δt - Xt = - (β δt) Xt  Yt/N 
 (Xt+δt – Xt)/ δt = β Xt Yt/N 

By fundamental theorem of calculus, as δt → 0, 
 dX/dt = - β X Y/N



o By definition, X+Y+Z = N

o These equations describe rates of change in state variables

o Parameters β, γ represent instantaneous rates

dX

dt
= ��X

Y

N
dY

dt
= �X

Y

N
� �Y

dZ

dt
= �Y

An ODE SIR model



o These equations describe rates of change in state variables 
o Parameters β, γ represent instantaneous rates

dX

dt
= ��X

Y

N
dY

dt
= �X

Y

N
� �Y

dZ

dt
= �Y

In my lectures (as in K&R 2008), 
variables X, Y & Z refer to the 
numbers of individuals in each class. 
Variables S, I, & R refer to the 
proportions of the population in 
each class 

An ODE SIR model



dX

dt
= ��X

Y

N
dY

dt
= �X

Y

N
� �Y

dZ

dt
= �Y

Important to notice: transmission rate is assumed to depend on 
frequency of infecteds in population (Y/N).  Hence, this is 
frequency-dependent transmission

An ODE SIR model



Simulating epidemics
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Infectious period (1/γ) = 3 days

Infectious period (1/γ) = 10 days

Infectious period (1/γ) = 20 days

Infectious period (1/γ) = 30 days

β = 10 yr-1 β = 50 yr-1 β = 100 yr-1 β = 200 yr-1



Model dynamics

• As parameters are varied, model predicts 
different outcomes 

• Can we anticipate trajectories without 
resorting to numerical integration? 

• Question: under what conditions will an 
infectious disease invade a system?



The Invasion Threshold

• When can an infectious disease invade a population? 
• Initial conditions: X(0) = N, Y(0) = 1, Z(0) = 0 
• Invasion only if dY/dt > 0 
• ie,  βXY/N – γY > 0  ⇒ Y(βX/N - γ) > 0 

• If and only if X/N > γ/β 
• Since X=N, requires 1> γ/β 
• Or β/γ > 1

Kermack & McKendrick (1927)



Basic Reproductive Ratio, R0
• Ratio β/γ gives number of cases before infected individual 

recovers 
• Universally referred to as R0 or Basic Reproductive Ratio  

• Definition: Number of secondary cases generated by a typical 
infected in an entirely susceptible population

R₀ < 1 

No invasion

R₀ =4 

Successful invasion



Infectious period (1/γ, days)
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R0 < 1

R0 and Model parameters


