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Hepatitis C

Seasonal Influenza
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SARS

Phocine Distemper
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HIV (FSW)

Mumps

Pertussis



The death of an epidemic

In SIR equations, let’'s divide equation for dX/dt by dZ/dt:
dX/dZ = - (B X Y/N)/(yY)
= - Ry X/N

Integrate with respect to Z
X(t) = X(0) e —4(t) Ro/N

When epidemic is over, by definition, we have X(e), Y(oo)
(=0), and Z(0)

X(o0) = N — Z(o0) = X(0) e —4(=) RoN



The death of an epidemic

SO, N — Z(e0) - X(0) e ~4(<)RoN = (O
Solve this numerically (‘transcendental’ equation)
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Epidemic dies out because
there are too few infectives,
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Number

¥ 10

Simple Epidemics

Influenza
hMeasles

Rubella

Chickenpox I

/\

0.05

0.1 0.15 0.2
Time_(years)

0.25

3 1/y R,

“Measles”
“Influenza”
“Chickenpox”

“‘Rubella”

0.019
886 /yr i

0.011
180 /yr I

0.022
315 /yr i

0.025
200 /yr i
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Frequency- or Density-Dependent
Transmission”

Assumed contact rate, k, constant: ‘'mixing’ is
independent of population size: frequency-dependent
transmission. Reasonable?

If we assume contact rate to be kN (increases with
‘crowding’), then transmission rate is

~dX/dt = -pXY
Called density-dependent transmission

Q
)
©
o
e
(&)
©
e
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Population Size



Does it Matter?

Again, pathogen invasion if dY/dt > O
It initially everyone susceptible (X=N),
BNY —vY>0 = Y(BN -vy) > O
In this case, we define Ry = N/y, so need Ry>1

ence, for any particular 3 and vy, there’s now a threshold

population density required for invasion




Incorporating virulence

e Assume infectious individuals die at rate a

1Y
Y _ay
dt R



Population Size
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What should we do?

If population size doesn’t change, FD & DD
equivalent (Bro = N X Bpp)
Otherwise:

Frequency-dependence generally more
appropriate in large populations with
heterogenous mixing, STDs, vector-borne
pathogens

Density-dependence representative of wildlite &
ivestock diseases (especially with smaller
population sizes)



ECTURE 2

Equilibrium Stability Analysis &
Next Generation Method
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L ONG-TERM DYNAMICS

* S0 far, looked at start and end of a simple epidemic

* In other settings, would like to know systems dynamics in
the long run

» Use equilibrium analysis



STDs AND SIS MODEL
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Simple model for a non-immunising
infection, that Is only cleared through
treatment

dX Y
g Y - pX N Recall that N=X+Y, so we can
dY Y rewrite this system as
a PN aYy Y
t
T :B(N—Y)N — A/

System reduced to a single dt
state variable —

b

What is Ry here? fo =3



EQUILIBRIUM ANALYSIS

- Can study properties of model at equilibrium (setting rates
of change = 0)

- Setting dY/at =0, we get
B(N-Y)Y/N -yY =0,
SoY(B(N=-Y)/N-v) =0

- Satisfied wheneverY=0 orY=N - NY/B = N(I-1/Ry)
- Eam points are: O and N(|-1/Ro)



STABILITY ANALYSIS

- 50, we have two equilibria — one where pathogen persists
and one where It Is absent

- What are conditions that determine when we observe
one or other!

* For answer to this question, we need to carry out linear
stability analysis

- Basic idea Is to start at an equilibrium point and introduce
a slight change (a ‘perturbation’) and establish whether this
perturbation grows (unstable) or decays (stable)



EQUILIBRIUM STABILITY

Stable Unstable  Neutrally
Stable

o determine stablility properties of equilibria, we
u need to calculate dominant ‘eigenvalue’




LINEAR STABILITY ANALYSIS: [-D CASE

* Assume we have a single state variable

dY
S = (V)

* 50, at equilibrium point Y*, {(Y*)=0

* Now, were interested In knowing what happens If we
slightly ‘perturb’ equilibrium

e LetY =Y* + vy (y<<Y*), substitute in ODE

d(Y +y) dy
dt o dt

fY" +y)



LINEAR STA

BILITY ANALYSIS: |-

CASE

- 1(Y*+y) can be expressed as a laylor expansion

dy :
= = F(r)

Fuf () R +

- Note: [ means derivative of [ with respect to Y




TAYLOR EXPANSION

1(r*+y)
fOY*)




LINEAR STABILITY ANALYSIS: [-D
CASE

- 1(Y*+y) can be expressed as a laylor expansion
dy

— = @) +yf (V") + (Y

- Note: f’ means derivative of [ with respect to Y
* We end up with a linear ODE, solution to which is

y(t) = y(0)el V7t

- £(Y*) is ‘eigenvalue’ -- from now on, we'll call it A
- Our perturbation, y(t), will
Grow exponentially if A >0 (equilibrium Unstable)

Decay exponentially if A <O (equilibrium Stable)



SIS MODEL

dY

)

dr 6Y(1

=—vY
N}Y

+ System Is In equilibrium as long as

»Y* =0 (or X*=N) ..1e D
»>orY* = N(I-y/B) = N(I-1/

=E

R0)

F(Y) = BY (1 - 3) — 7Y
Fony =40 _p

dy

Y
_ 93 _
5N Y



SIS MODEL

f'(Y) =6—26% —

® So, when Y*=0,
J(0) = B-y
=<0 if y>[ or Ro<1

® When Y*=N(1-y/p),

£V = -Bry
=<0 if B3>y or Ro>1



STABILITY ANALYSIS

* | et's do this In general terms

 [For a system containing n state variables, we have

dN .
o = SN0 N i

= Now, we perturb equilibrium (N = Ni"+xi, xi<<N;"), Taylor
expand fi() and ignore higher order terms (xi, xix; etc)

= Growth of perturbations (i, 1=1,...,n) given by linear set of
ODEs

Keeling & Rohani (2008) pp30-3 |
Excellent texts: Strang (1986) & Kreyszig (2010)



SIR MODEL WITH DEMOGRAPHY

* Move on to thinking about recurrent epidemics, facilitated by replenishment of
susceptible pool via naive births

Transmaission Recovery

dsS

SE=WBSI-uS i o / /

I mmmmmd SUsceptible Recovered

7 PST = (y +w)!

i death death death

— =Y/ - uR

dt *u is both per capita host birth and death
ﬁ rate

S++R=1 Ry = (,LL T ’Y) -Population size assumed constant

*Host life expectancy given by 1/u



cQUILIBRIUM ANALYSIS - SIR

. Get $* = I/Ro and I¥ = w/B (Ry-1) (check)

* 50, at endemic equilibrium, we have

(S*, I ’R)_(Ro’ﬁ(RO 1),1 A 6(R0 1))

This equilibrium is only (biologically) feasible as long as Ry>1

Note: we also have (S*,1*,R*)=(1,0,0)
Called disease-free equilibrium (DFE) — stable only if Ro < 1




ADDING A LATENT PERIOD: SEIR MODE

* Incorporating a latent period takes into account transition
from infected but not yet infectious to infectious

§=M—l351—u5
dt
d—E=BSI—(0+pL)E
dt
ﬂ=0E—(Y+M)I
dt

dR

— =y[—uR

7

Note:S+E +1+R =1



SEIR MODEL

* In qualitative ways, this addition makes little difference

* System still possesses two equilibria: DFE (1,0,0) and an
endemic equilibrium

AR (Fo = 1>>

H
B
Expression for Ry Is now

R, = po
(W+y)(n+0)




INVASION PHASE: SIR

» Consider dl/dt for SIR model, evaluated at disease free equilibrium

dl

pT = BSI — (u+ )1

=Bl — (p+)1

e Can solve this wrt t

Isir ~ I(0) X eB—(pt7)t

Isir ~ 1(0) x oV (Ro—1)t



INVASION PHASE: SEIR

* [f we do exactly same thing for SEIR model (straightforward but more
involved), we get

Isgrr = I(O) - e% (—(U—I—fy)—l—\/4(30_1)704_(7_'_0)2)

This seems pretty unwieldy. Let's see what happens If we assume y=0
Ispir ~ I(0) x o(VRo—1)vt

S0, In comparison with SIR model, invasion speed in SEIR model scales
with v/Ro



SEIR

THE INVASION PHASE
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DERIVING EXPRESSION FOR
o

. Examine eigenvalues at disease-free equilibrium
e Show system has two eigenvalues, A=-u and A=(y+u)

(B/Cy+uw)-1)

o Aslong as B/(yt+w)> 1, disease-free equilibrium is
unstable and pathogen successfully invades

/. Use "next generation method" or “Spectral Radius
method” (see Diekmann et al. 1990; |. Math. Biol. and
Heffernan et al. 2005; /. R. Soc. Interface)



NEXT GENERATION METHOD

» Useful when host population can be split into disjoint categories
(representing epidemiological complexities)

» Establishes # of transmissions generated by typical infected In
susceptible population

« Denote x = {x|, X, ..., x_} represent n infected host
compartments

e« Denotey = {y,, ¥ ..., Y} represent m other host
compartments



NEXT GENERATION METHOD

e F = rate at which new infecteds enter compartment |

e V. = transfer of individuals out of minus into ith

compartment



ASSUMP TIONS

. FiOy) = Vi(Oy) =0 Vv y>0
(no new Infections If no infecteds)

. Fixy) =2 0Vx =0andy = 0
(no new Infections If no Infecteds)

I Vi(Oy) =0Vy =0
(I compartment empty, can only have inflow)

V. 2iVilxy) 20Vvxi=0andy; =0
(sum Is net outflow)

V. System y' = G(0,y) has unique asymptotically stable
equilibrium, y*



SIR MODEL

ere,n=1,m=2,x=l,y = (S5R)

dsS

— = p— BSI— puS Fy = BSI

dl Vi=(pu+)1

— = BST —~I — ul
dt Lol G =u—BSI —usS

Cii—}::y[—,uR Go =yl — pR



LINEARIZATION

General system

A
L= Fi(w,y) = Vi(z,y)  i=t,.,n
dt
dy;
d—tj :gj(x7y) J=15 !m
can decouple x-system from y-system dr _ (F —V)a

when close to disease-free equilibrium, y*  dt

where F andV are n x n matrices:

- v,
Fz’j_@xj(ovy) ‘/;J_amj(()’y)




NEXT GENERATION METHOD

dx
— = (F -V
pr ( )T

f F=0 (no new infections), x = x(0)e ",

-xpected number of secondary cases produced by an Initial case Is

/OOO Fe V'z(0)dt = F(/OOO ewdt>az(0) = FV~—'2(0)

Next Generation Matrix, K=FV-!.

—ntry Kj represents expected number of secondary cases In
compartment | by an individual in compartment |




NEXT GENERATION METHOD

* Next generation operator (FV-') gives rate at which
individuals In compartment j generate new Infections In
compartment | times average length of time individual
spends In single visit to compartment |

* R, IS given by dominant eigenvalue (or ‘'spectral radius’, p)
of FV-',ie Ro = p(FV-") = p(K)



SIR MODEL

ere,n=1, m=2,x=l,y = (S,R
Y =y BSI S &
W BST — I — I ~
e Vi = (n+ )1
N R G = p — BST — S
e Gy =1 — pR
G S o0V
F=%r=F V=37 =#t7
Hence, Ry = p

(1 + )



NEXT GENERATION METHOD

* SEIR equations (again):

7N
=u—-(p/+wn)S
ki
dE !
= ﬁ]S s (M +O’)E =
- dt (— We deal with these two
m% _GE — (. +Y)] i Infected’ compartments

How do we use Next Generation Method to
work out Ry for this model?



NEXT GENERATION METHOD

* Write down matrix F, which defines rate of new infections In
different compartments, differentiated with respect to E and
| and evaluated at disease-free equilibrium

= 551 ds

Fy =0 jf
E
o ( 8(551) 3(551) ) Jt = IHS—(M +0)E
b
0 0

=u—(pl+w)s

dl

) dt

=0E - (uw+vy)/

P (g =



NEXT GENERATION METHOD

* Now, we write a new matrixV that defines rate of
transfer of infectives from one compartment to another

V1:(,u—|—a)E dS—M—(ﬁI+M)S
Vo= (u+~)I —oFE j]g
E=MS_(M+O)E
_ (put+o 0O
E ( —0 ,u—l—v) ZZ—OE-(MW)I



NEXT GENERATION METHOD

* Recall that inverse of /a b\_ E I / d _b\T
c d}L ad -bc\-c a7
S0, we get:
1 0 3 ) o) 4
— e p4v)(p+o
g = (O 0 ) o u+to
(u+v)(p+o) (p+v)(

¥




NEXT GENERATION METHOD

L Bo B(p+o)
FV : — ( (u+’v)0(u+0) (u+'y)0(u+0) )

This 1s Next Generation Operator. Ro given by largest
eigenvalue of this matrix:

Bo B(u+o)
PVl = [T N GG
0 0— A
Bo
i
T (et o)

Check:o =0, Ry = B/(u+y) as for SIR model



ANOTHER EXAMPLE

For some infectious diseases (eg avian influenza viruses),
transmission thought to occur via two distinct pathways.

1. Susceptible hosts (birds) may become infected as a result of
direct contact with an infectious individual

2. OR, birds may also become infected via contact with (ie
drinking) contaminated water at rate Bv. Each infectious
individual sheds virus into environment at a rate w, and virus in
environmental reservoir (denoted by V) decays at a rate p



FLOW DIAGRAM




NEXT GENERATION MATRIX

» Matrix F, defines new Infections in different compartments

[, = BSI+BySV: Fo,=0

ds
__ (BB = = (1 —=8) — (BI + By V)S
= e i p(1 = 8) = (BI + BvV)
P (BI+BvV)S — (n+)1
Vi=pw+v); Va=pV —wl Cii—‘t/:cul—pv




NEXT GENERATION MATRIX

* Next Generation Operator given by

el B . Pyw AV
FV I — ( (n+) 'Op(qu'v) 8 )

» Work out spectral radius (det(FV-' - A4 )=0):

Ry — 5 I By w

(+v)  plp+7)




LECTURE SUMMARY ...

* Linear Stability Analysis
e SIR/SEIR endemic egm stable it Ry > |

* Adding latent period, SEIR model

* Alffects speed of epidemic take-off

« Next Generation Method to derive expression for R, for
any model



CLASS CHALLENGE: HIV PROGRESSION

Asymptomatic Phase

AAAAAAAA

Model needs to consider
infectivity of different
stages and respective
durations

CD4 T CELL
COUNT

—

0 Gy g g T T
0 6 121 2 3 4 5 8 7 8 9 10 11

WEEKS YEARS
BP Fauci et al. 1995: Ann Intern Med

9
S Equations:
(@)
r dS
= Pol,+ P, 1
5 P A
— = 4)S
|_

dI

Ime s (ﬁpl +[)’A )S_éplp Show:
F >6 » infection _ ﬁP F [)’A

1/80  1/84 %_51 Y % 5. "5,




HINT: YOU'LL NEED TO KNOW

Shi - g
=d;dy, —d;,dy,
d, d,
L
( \ ( \
a, 4y 1 dy, —dp

\ d, dy / a11a22_a12a21\ —d, 4 /



SOLUTION
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