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Parameter estimation

• We’ve seen that basic reproductive ratio, R0, is a 
very important quantity


• How do we calculate it?  


• In general, we might not know (many) model 
parameters.  How do we achieve parameter 
estimation from epidemiological data?


• Review some simple methods



The death of an epidemic
• In SIR equations, let’s divide equation for dS/dt by dR/dt:


• dS/dR = - (β SI)/(γI)


• 		 	 = - R0 S


• Integrate with respect to R


• S(t) = S(0) e –R(t) R0


• When epidemic is over, by definition, we have S(∞), I(∞) 
(=0), and R(∞)


• S(∞) = 1 – R(∞) = S(0) e –R(∞) R0



The death of an epidemic
• So, 1 – R(∞) - S(0) e –R(∞) R0 = 0

• Solve this numerically (‘transcendental’ 

equation)
Epidemic dies out because 
there are too few infectives, 
not because of too few 
susceptibles


Kermack & McKendrick (1927)



1a. Final outbreak size

• So, if we know population size (N) , initial susceptibles (to 
get S(0)), and total number infected (to get R(∞)), we can 
calculate R0


• Note: Ma & Earn (2006) showed this formula is valid even 
when numerous assumptions underlying simple SIR are 
relaxed

R0 = � log(1�R(1))

R(1)



1. Final outbreak size

• Worked example:

Influenza epidemic in a British 
boarding school in 1978


N = 764


X(0) = 763


Z(∞) ~ 512


R0 ~ 1.65



1b. Final outbreak size

• Becker showed that with more information, we can also 
estimate R0 from 


• Again, we need to know population size (N) , initial 
susceptibles (X0), total number infected (C)


• Usefully, standard error for this formula has also been derived

(~1.66)



• An epidemiologically interesting quantity is mean age at 
infection – how do we calculate it in simple models?


• From first principles, it’s mean time spent in susceptible 
class


• At equilibrium, this is given by 1/(βI*), which leads to 

! This can be written as R0-1 ≈ L/A 	 (L= life expectancy)


! Historically, this equation’s been an important link between 
epidemiological estimates of A and deriving estimates of R0

2. Independent data

A = ( 1
μ(R0 − 1) ) = (1

μ )( 1

(R0 − 1) )



Measles Age-Stratified Seroprevalence

Infection-
derived 
immunity

Maternally-
derived 
antibodies

Mean age at infection (A) is ~4.5 years


Assume L~75, so R0 ~ 17.6



Historical significance

Anderson & May (1982; Science)



3.  Epidemic Take-of

Recall from linear stability 
analysis that


Take logarithms


So, regression slope will give R0

A slightly more common approach is to study the epidemic 
take off



3. Epidemic take-of

• Back to school boys

Looks like 
classic 
exponential 
take-of



Epidemic take-of

Λ = 1.0859

So, 

R0=1.0859*2.5+1


     = 3.7

Our value for ‘flu 
infectious period, 1/γ



Vynnycky et al. (2007)



Vynnycky et al. (2007)



Variants on this theme

• Recall


• Let Td be ‘doubling time’ of outbreak


• Then, 


–R0 = log(2) /Tdγ +1



4. Likelihood & inference

• We focus on random process that (putatively) 
generated data 


• A model is explicit, mathematical description of 
this random process 


• “The likelihood” is probability data were 
produced given model and its parameters:


• L(model | data) = Pr(data | model)


• Likelihood quantifies (in some sense optimally) 

17



4. Likelihood & estimation

• Assume we have data, D, and model output, M 
(both are vectors containing state variables).  Model 
predictions generated using set of parameters, θ


• Observed dynamics subject to 


– “process noise”: heterogeneity among 
individuals, random differences in timing of 
discrete events (environmental and demographic 
stochasticity)


– “observation noise”: random errors made in 
measurement process itself



4. Likelihood & estimation

• If we ignore process noise, then 
model is deterministic and all 
variability attributed to 
measurement error


• Observation errors assumed to 
be sequentially independent  


• Maximizing likelihood in this 
context is called ‘trajectory 
matching’



4. Likelihood & estimation

• Under such conditions, Maximum Likelihood 
Estimate, MLE, is simply parameter set with smallest 
deviation from data


• Equivalent to using least square errors, to decide 
on goodness of fit


– Least Squares Statistic = SSE = Σ(Di – Mi)2


• Then, minimize SSE to arrive at MLE



COVID-19 fitting

21
Zhao et al. (2020; Int. J. Inf. Dis.)

R0=5.31 (3.99–6.96) R0=4.52 (3.49–5.76) R0=4.01 (3.17–5.02) R0=3.38 (2.75–4.12)



Trajectory matching
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Trajectory matching
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Model estimation: Influenza outbreak
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Model estimation: Influenza outbreak
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Best fit parameter values:

β = 1.96 (per day) 

1/γ = 2.1 days


R0 ~ 4.15

β=1.96

γ=0.47

Generally, may have 
more parameters to fit, 
so grid search not 
efficient


Nonlinear optimization 
algorithms (eg Nelder-
Mead) would be used



Likelihood surface
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When likelihood surface is somewhat complex, success of estimation using gradient-based 
optimization algorithms (eg Nelder-Mead) will depend on providing a good initial guess



Other approaches

Data Model
Max

Min

Inter-epidemic 
period Inter-epidemic 

period

Compare model output with data, based on statistical 
“features” (or “probes”) rather than raw numbers



Historical patterns of pertussisPertussis in the US
United States
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PUZZLE: Some countries with high vaccine coverage have experienced resurgence

12 infant deaths 
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Pertussis!
• Problem:  No identified serological marker for protection 


• How to infer protective duration following infection or 
vaccination?

Opposite Patterns of Synchrony
in Sympatric Disease
Metapopulations

Pejman Rohani,* David J. D. Earn,† Bryan T. Grenfell

Measles epidemics in UK cities, which were regular and highly synchronous
before vaccination, are known to have become irregular and spatially uncor-
related in the vaccine era. Whooping cough shows the reverse pattern, namely
a shift from spatial incoherence and irregularity before vaccination to regular,
synchronous epidemics afterward. Models show that these patterns can arise
from disease-specific responses to dynamical noise. This analysis has implica-
tions for vaccination strategies and illustrates the power of comparative dy-
namical studies of sympatric metapopulations.

A central debate in ecology concerns the rela-
tive importance of deterministic and stochastic
processes in shaping the dynamics of popula-
tions (1). This issue has become more complex
since the recognition that patterns of population
fluctuation are substantially influenced by spa-
tial structure and synchrony (2). Progress has
been made in studies showing close dynamical
agreement between models and data (3, 4), the
exploration of spatial structure (5–7), and com-

parative analyses of population dynamics
across species (8). However, models and long-
term observed spatiotemporal data have not
been combined to analyze the comparative con-
temporaneous dynamics of sympatric met-
apopulations. This can be achieved in the study
of childhood bacterial and viral infections (for
example, measles, whooping cough, rubella,
and chicken pox), for which there are unusually
extensive spatiotemporal data and realistic

models (6, 9, 10).
We present an analysis of weekly incidence

data from 60 cities in England and Wales from
1944 to 1994 for measles and whooping cough
(11, 12). The time series encompass dramatic
changes in effective demographic parameters,
particularly as a result of nationwide vaccina-
tion schemes (starting in 1968 for measles and
1957 for whooping cough). This permits the
study of the comparative dynamical effects of
vaccination as a “natural experiment.” Apart
from their broad ecological interest, under-
standing the mechanisms that drive the dynam-
ics of disease metapopulations is also funda-
mental in the design of successful vaccination
programs.

The two infections have a similar reproduc-
tive ratio (R0) of 16 to 18 (9, 12). The measles
virus is transmitted by means of aerosol parti-
cles and is highly infectious. It conforms very
closely to the assumptions of the SEIR (suscep-
tible, exposed, infectious, recovered) class of
models, with a latent period of about 8 days, an
effective infectious period of about 5 days, and
life-long immunity after infection (9). Before
mass immunization, the dynamics of measles
were highly synchronized across England and
Wales with a pronounced 2-year period from

Fig. 1.Measles and whoop-
ing cough notifications in
England and Wales from
1944 to 1994, obtained
from the Registrar Gener-
al’s Weekly Returns. (A)
Time series for measles in
London (black line) togeth-
er with the published vac-
cine uptake levels (per-
centage of infants vacci-
nated) for England and
Wales (20), starting in
1968 (red line). (B) The
spatial distribution of log10
(1 ! measles cases) with
cities arranged in descend-
ing order of population size
(from top to bottom) and
colors denoting epidemic
intensity (white regions
highlight periods with no
reported cases). (C) Cases
of whooping cough in Lon-
don (black line), with the
vaccine uptake levels (red
line) (20). (D) The spatial
data for pertussis in En-
gland and Wales with the
same color scheme as in
(B). In (D), there is a sub-
tle but noticeable change
in the pattern of case re-
ports from 1974 to 1984.
This was due to a na-
tionwide scare concern-
ing the safety of the per-
tussis vaccine, resulting in a dramatic drop in vaccine uptake levels
(30% in 1978) (20). In addition to an increase in the reported cases
of pertussis, the data suggest that this relatively sudden reduction in

vaccine uptake caused a slight spatial desynchronization. The vertical
black lines in (B) and (D) represent the onset of vaccination. Sqrt,
square root.

R E P O R T S

29 OCTOBER 1999 VOL 286 SCIENCE www.sciencemag.org968



Opposite Patterns of Synchrony
in Sympatric Disease
Metapopulations

Pejman Rohani,* David J. D. Earn,† Bryan T. Grenfell

Measles epidemics in UK cities, which were regular and highly synchronous
before vaccination, are known to have become irregular and spatially uncor-
related in the vaccine era. Whooping cough shows the reverse pattern, namely
a shift from spatial incoherence and irregularity before vaccination to regular,
synchronous epidemics afterward. Models show that these patterns can arise
from disease-specific responses to dynamical noise. This analysis has implica-
tions for vaccination strategies and illustrates the power of comparative dy-
namical studies of sympatric metapopulations.

A central debate in ecology concerns the rela-
tive importance of deterministic and stochastic
processes in shaping the dynamics of popula-
tions (1). This issue has become more complex
since the recognition that patterns of population
fluctuation are substantially influenced by spa-
tial structure and synchrony (2). Progress has
been made in studies showing close dynamical
agreement between models and data (3, 4), the
exploration of spatial structure (5–7), and com-

parative analyses of population dynamics
across species (8). However, models and long-
term observed spatiotemporal data have not
been combined to analyze the comparative con-
temporaneous dynamics of sympatric met-
apopulations. This can be achieved in the study
of childhood bacterial and viral infections (for
example, measles, whooping cough, rubella,
and chicken pox), for which there are unusually
extensive spatiotemporal data and realistic

models (6, 9, 10).
We present an analysis of weekly incidence

data from 60 cities in England and Wales from
1944 to 1994 for measles and whooping cough
(11, 12). The time series encompass dramatic
changes in effective demographic parameters,
particularly as a result of nationwide vaccina-
tion schemes (starting in 1968 for measles and
1957 for whooping cough). This permits the
study of the comparative dynamical effects of
vaccination as a “natural experiment.” Apart
from their broad ecological interest, under-
standing the mechanisms that drive the dynam-
ics of disease metapopulations is also funda-
mental in the design of successful vaccination
programs.

The two infections have a similar reproduc-
tive ratio (R0) of 16 to 18 (9, 12). The measles
virus is transmitted by means of aerosol parti-
cles and is highly infectious. It conforms very
closely to the assumptions of the SEIR (suscep-
tible, exposed, infectious, recovered) class of
models, with a latent period of about 8 days, an
effective infectious period of about 5 days, and
life-long immunity after infection (9). Before
mass immunization, the dynamics of measles
were highly synchronized across England and
Wales with a pronounced 2-year period from

Fig. 1.Measles and whoop-
ing cough notifications in
England and Wales from
1944 to 1994, obtained
from the Registrar Gener-
al’s Weekly Returns. (A)
Time series for measles in
London (black line) togeth-
er with the published vac-
cine uptake levels (per-
centage of infants vacci-
nated) for England and
Wales (20), starting in
1968 (red line). (B) The
spatial distribution of log10
(1 ! measles cases) with
cities arranged in descend-
ing order of population size
(from top to bottom) and
colors denoting epidemic
intensity (white regions
highlight periods with no
reported cases). (C) Cases
of whooping cough in Lon-
don (black line), with the
vaccine uptake levels (red
line) (20). (D) The spatial
data for pertussis in En-
gland and Wales with the
same color scheme as in
(B). In (D), there is a sub-
tle but noticeable change
in the pattern of case re-
ports from 1974 to 1984.
This was due to a na-
tionwide scare concern-
ing the safety of the per-
tussis vaccine, resulting in a dramatic drop in vaccine uptake levels
(30% in 1978) (20). In addition to an increase in the reported cases
of pertussis, the data suggest that this relatively sudden reduction in

vaccine uptake caused a slight spatial desynchronization. The vertical
black lines in (B) and (D) represent the onset of vaccination. Sqrt,
square root.

R E P O R T S

29 OCTOBER 1999 VOL 286 SCIENCE www.sciencemag.org968

immunity, using the same estimates of Ap and L (see Appendix S1 for
details). In general, if we fix the average age at infection, waning
immunity results in a reduction in the estimated value of R0, via a
reduction in transmission rates. This is entirely intuitive: an
infectious disease which does not confer long-lasting immunity
does not need to be as transmissible to attain the same prevalence as
one that results in permanent immunity, because lower transmission
is offset by faster replenishment of the susceptible pool.

A potential pitfall of such an analysis would be to allow parameters
to vary independently because changes in assumed immunity
characteristics affect the basic reproductive ratio, R0 (see Appendix
S1 for details; [29]). Therefore, in order to ensure our model
dynamics conform to important epidemiological observations [31],
we constrain our transmission traits as immunity parameters are
varied to keep the mean age at primary infection fixed at 4 years.

To compare our model predictions to data, we record new cases
(new arrivals to the recovered class) and assume that 15% of

primary infections are reported and only 1% of repeat infections
(below, we discuss the effects of varying the reporting rate). Our
primary reporting rate was calibrated (in the pre-vaccine era and
in the absence of reporting repeat infections) so that the number of
case reports predicted by the model quantitatively agrees with
observed values in the England and Wales data and is supported
by the work of Clarkson & Fine [32]. This calibration holds as we
vary certain transmission and immunity parameters, because by
fixing the age at primary infection, the equilibrium level of
primary infections does not depend on the number of repeat
infections (see Appendix S1).

Results

Inter-epidemic periods
We begin by comparing model predictions about the inter-

epidemic periods to observations from England and Wales in the

Figure 1. A model of pertussis immunity and transmission: an extension of the SEIR paradigm that allows for reinfection and
gamma-distributed infectious periods. The parameter n denotes the background birth rate, m the background death rate, bij is the transmission
rate from infected individuals Ij to susceptible individuals Si, and 1=ci is the average length of infectiousness, where i, j = 1 represents primary
infections and i, j = 2 represents repeat infections. To mimic the opening and closing of schools, which affects transmission between children [40], we
assume that b11(t)~b1(1za) during term time and b11(t)~b1(1{a) during school holidays [41]. In addition, because we would like to focus on the
relative infectiousness of repeat infections to primary infections (g), and the relative magnitude of the contact rates, we rewrite the transmission rates
as b12~gxb0 , b21~xb0 and b22~gjb0 , where b0 is the average transmission rate from individuals with a primary infection to naive individuals.
Following the work of Nguyen & Rohani [42], we assume that the infectious period is gamma-distributed with shape parameter n = 4. The parameter e
represents the probability that susceptible (but previously infected or vaccinated) individuals, upon exposure, boost their immunity instead of
becoming infectious. In the basic model, e~0 and in the immune-boosting model, 0veƒ1.
doi:10.1371/journal.ppat.1000647.g001

Estimating Pertussis Immunity
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• Simulate model using Gillespie’s Direct Method

• Include birth rates and population size drawn 

from England & Wales

• Quantitatively contrast model output with data


Inter-epidemic period

Fade-out (extinction) frequency

Wearing & Rohani (2009)
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Inter-epidemic period

Critical community size
Next we explore whether critical community size (CCS) can

provide us with a further signature of waning immunity which may
be detected in the data. For both data and model output, we plot a
measure of the extinction frequency of the disease (fade-outs) against
population size. We considered two different definitions and both
produced similar results: the one we present here is the proportion
of weeks with zero cases; the other measure we considered is the
number of times at least 3 consecutive weeks have zero cases per
epidemic. In the pre-vaccine era, analyses of fade-outs in the
stochastic basic model demonstrate that the CCS increases
gradually as the duration of naturally acquired immunity increases
(Figure 4A). Analyses of the England and Wales data suggest a CCS
of between 150,000 and 250,000 (blue markers, Figure 4C). The
extremes of very rapid loss of immunity or permanent immunity
result in CCSs slightly below or above this range, respectively.
When vaccination is implemented, the CCS increases for all
durations of immunity, except that the increase is more dramatic as
the duration of immunity increases (Figure 4B). In the vaccine era,
data from England and Wales suggest a CCS of between 800,000
and 1 million (red markers, Figure 4C), which is consistent with a
substantial period of immunity but not permanent immunity.

Given the immunity parameters that we used in our investigations,
we also determine which parameter generates a distribution of fade-
outs that most closely resembles the data. We quantify this by fitting

an exponential curve to the data in the two eras and then asking how
well this curve fits the fade-outs predicted by the stochastic model, as
assessed by the square of the residuals (see Figure 4D). We find the
results to be inconclusive in the pre-vaccine era (blue lines) because
there is not enough of a distinction between the fade-out profiles. In
the vaccine-era (assuming av~an), the results are quite different: the
average duration of immunity that leads to the smallest error is 80 or
100 years. This error is significantly smaller than that for all durations
of 40 years and below. Similar conclusions are reached if we fix av at
the best-fit value from the periodicity data. This result is also robust to
variations in the reporting rate of repeat infections. In fact, the lowest
errors are obtained by discounting all case reports of repeat infections.

The results of our analyses of the model with immune boosting
(Figure 5) are qualitatively very similar to those for the basic model
(Figure 4). The most notable difference is observed in the vaccine
era, where we obtain the closest agreement with the England &
Wales data (resulting in the lowest squared residuals) for a much
wider range of durations of immunity: between 40 and 100 years.

Robustness to changes in transmission parameters
For the basic model, together with the specific transmission

parameters investigated above, it appears that natural immunity of
an average duration of between 60 and 100 years gives the most
parsimonious fit with the data as measured by inter-epidemic
period and fade-out profile. We are also interested in understand-

Figure 2. Basic model: analyses of the dominant periods of the England and Wales pertussis data (gray markers) compared to the
dominant periods of stochastic realizations of the pertussis reinfection model (black markers), as the duration of immunity is
varied. Panel A illustrates results for the pre-vaccine era, panel B for the vaccine era assuming that av~an, and panel C for the vaccine era fixing the
average duration of vaccine-induced immunity at 10 years (av~0:1). The diameter of the marker reflects the proportion of the 50 largest cities (data)
or 1000 simulations (model: 50 realizations are generated for 20 different population sizes) for which spectral analysis of weekly case reports reveals
that period to be the dominant signal (note: as we show in Figure S11, increasing the number of stochastic realizations does not qualitatively affect
our findings). Any dominant period not significant at the 95% level is denoted as having a period of 0 years. The average normalized power for each
dominant signal is illustrated in Figure S1. The length of time series analyzed is 13 years in the pre-vaccine era, and 15 years in the vaccine era. The
percentages displayed to the right of each panel are the overlap between the data and the model output. Parameter values for the model are given
in Table 1, with e~0. The population size, N, is varied from 75,000 to 1.5 million. To allow for the reintroduction of infection following extinction in a
single population, we include a background force of infection of 50/million/yr (results are similar if we assume 10/million/yr). The axis representing
the average duration of immunity is not to scale between 100 years (an~0:01) and permanent immunity (an~0).
doi:10.1371/journal.ppat.1000647.g002
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the average duration of immunity is not to scale between 100 years (an~0:01) and permanent immunity (an~0).
doi:10.1371/journal.ppat.1000647.g002
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Critical community size
Next we explore whether critical community size (CCS) can

provide us with a further signature of waning immunity which may
be detected in the data. For both data and model output, we plot a
measure of the extinction frequency of the disease (fade-outs) against
population size. We considered two different definitions and both
produced similar results: the one we present here is the proportion
of weeks with zero cases; the other measure we considered is the
number of times at least 3 consecutive weeks have zero cases per
epidemic. In the pre-vaccine era, analyses of fade-outs in the
stochastic basic model demonstrate that the CCS increases
gradually as the duration of naturally acquired immunity increases
(Figure 4A). Analyses of the England and Wales data suggest a CCS
of between 150,000 and 250,000 (blue markers, Figure 4C). The
extremes of very rapid loss of immunity or permanent immunity
result in CCSs slightly below or above this range, respectively.
When vaccination is implemented, the CCS increases for all
durations of immunity, except that the increase is more dramatic as
the duration of immunity increases (Figure 4B). In the vaccine era,
data from England and Wales suggest a CCS of between 800,000
and 1 million (red markers, Figure 4C), which is consistent with a
substantial period of immunity but not permanent immunity.

Given the immunity parameters that we used in our investigations,
we also determine which parameter generates a distribution of fade-
outs that most closely resembles the data. We quantify this by fitting

an exponential curve to the data in the two eras and then asking how
well this curve fits the fade-outs predicted by the stochastic model, as
assessed by the square of the residuals (see Figure 4D). We find the
results to be inconclusive in the pre-vaccine era (blue lines) because
there is not enough of a distinction between the fade-out profiles. In
the vaccine-era (assuming av~an), the results are quite different: the
average duration of immunity that leads to the smallest error is 80 or
100 years. This error is significantly smaller than that for all durations
of 40 years and below. Similar conclusions are reached if we fix av at
the best-fit value from the periodicity data. This result is also robust to
variations in the reporting rate of repeat infections. In fact, the lowest
errors are obtained by discounting all case reports of repeat infections.

The results of our analyses of the model with immune boosting
(Figure 5) are qualitatively very similar to those for the basic model
(Figure 4). The most notable difference is observed in the vaccine
era, where we obtain the closest agreement with the England &
Wales data (resulting in the lowest squared residuals) for a much
wider range of durations of immunity: between 40 and 100 years.

Robustness to changes in transmission parameters
For the basic model, together with the specific transmission

parameters investigated above, it appears that natural immunity of
an average duration of between 60 and 100 years gives the most
parsimonious fit with the data as measured by inter-epidemic
period and fade-out profile. We are also interested in understand-

Figure 2. Basic model: analyses of the dominant periods of the England and Wales pertussis data (gray markers) compared to the
dominant periods of stochastic realizations of the pertussis reinfection model (black markers), as the duration of immunity is
varied. Panel A illustrates results for the pre-vaccine era, panel B for the vaccine era assuming that av~an, and panel C for the vaccine era fixing the
average duration of vaccine-induced immunity at 10 years (av~0:1). The diameter of the marker reflects the proportion of the 50 largest cities (data)
or 1000 simulations (model: 50 realizations are generated for 20 different population sizes) for which spectral analysis of weekly case reports reveals
that period to be the dominant signal (note: as we show in Figure S11, increasing the number of stochastic realizations does not qualitatively affect
our findings). Any dominant period not significant at the 95% level is denoted as having a period of 0 years. The average normalized power for each
dominant signal is illustrated in Figure S1. The length of time series analyzed is 13 years in the pre-vaccine era, and 15 years in the vaccine era. The
percentages displayed to the right of each panel are the overlap between the data and the model output. Parameter values for the model are given
in Table 1, with e~0. The population size, N, is varied from 75,000 to 1.5 million. To allow for the reintroduction of infection following extinction in a
single population, we include a background force of infection of 50/million/yr (results are similar if we assume 10/million/yr). The axis representing
the average duration of immunity is not to scale between 100 years (an~0:01) and permanent immunity (an~0).
doi:10.1371/journal.ppat.1000647.g002
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immunity is exponentially distributed. Therefore, there is
substantial variance around the mean (the coefficient of variation
is 1) and many individuals will lose immunity quickly and some
never at all. If we consider the time taken for 25% of the
population to lose immunity, estimates of the average duration of
immunity between 50 and 80 years would predict that this lies in
the range 14–23 years (see Figure 6). Moreover, more than 10% of
the population would have lost immunity within 10 years, which is
not in contradiction with clinical reports.

We extended both models to consider a gamma-distributed
immune period (with two classes, leading to a coefficient of
variation of 0.7). This model was less parsimonious with the data,
especially in the pre-vaccine era when it predicted longer inter-
epidemic periods and higher CCSs (Figures S7, S8, S9 and S10).
What these results suggest is that pertussis immunity is inherently
variable, and efforts to understand waning immunity of pertussis
require knowledge of the distribution of immune periods.

Unfortunately, our analyses are less conclusive about the
average duration of vaccine-derived immunity. However, for the
range of natural immunity consistent with the pre-vaccine era
data, the corresponding durations of vaccine-derived immunity
that give the best agreement with the data in the vaccine era are
generally shorter than the duration of natural immunity (and are
very short for the longest durations of natural immunity). Parsing
out the effects of different durations of vaccine-derived immunity
will require longer time series and potentially better data on
‘‘silent’’ repeat infections. This could be approached by consid-
ering longer datasets from the vaccine era. However, later
perturbations in vaccine uptake (during the mid-1970s) and
changes in vaccine content and protocols add further complexity
to determining the duration of vaccine-induced immunity.

Our model analyses highlight a number of robust findings.
Assuming that asymptomatic infections are unobserved, we find
model output to be in strong agreement with empirical patterns as

Figure 4. Basic model: the effects of waning immunity on critical community size. Panels A and B illustrate analyses of weekly fade-outs in
the stochastic model in the pre-vaccine and vaccine era as the average duration of immunity (1=an) is varied. Panel C shows fade-out analyses for the
England and Wales data in the pre-vaccine (blue) and vaccine (red) eras: open circles denote data points and solid lines the best-fit exponential curve.
Panel D demonstrates the results of fitting model output to the fade-out curves shown in C, as assessed by the square of the residuals: the blue lines
represent the pre-vaccine era; the red lines represent the vaccine era assuming that vaccine-induced immunity is lost at the rate av~an . Solid lines
denote averages and dashed lines indicate the 90% confidence envelope. For the stochastic model, weekly fade-outs are calculated as the average
number of weeks per year with zero case reports, assuming a 15% primary reporting rate and 1% secondary reporting rate, averaged over 50
realizations for each population size. Parameter values for the model are given in Table 1, with e~0. In panels A, B and D, the axis representing the
average duration of immunity is not to scale between 100 years (an~0:01) and permanent immunity (an~0).
doi:10.1371/journal.ppat.1000647.g004
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to determining the duration of vaccine-induced immunity.
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Figure 4. Basic model: the effects of waning immunity on critical community size. Panels A and B illustrate analyses of weekly fade-outs in
the stochastic model in the pre-vaccine and vaccine era as the average duration of immunity (1=an) is varied. Panel C shows fade-out analyses for the
England and Wales data in the pre-vaccine (blue) and vaccine (red) eras: open circles denote data points and solid lines the best-fit exponential curve.
Panel D demonstrates the results of fitting model output to the fade-out curves shown in C, as assessed by the square of the residuals: the blue lines
represent the pre-vaccine era; the red lines represent the vaccine era assuming that vaccine-induced immunity is lost at the rate av~an . Solid lines
denote averages and dashed lines indicate the 90% confidence envelope. For the stochastic model, weekly fade-outs are calculated as the average
number of weeks per year with zero case reports, assuming a 15% primary reporting rate and 1% secondary reporting rate, averaged over 50
realizations for each population size. Parameter values for the model are given in Table 1, with e~0. In panels A, B and D, the axis representing the
average duration of immunity is not to scale between 100 years (an~0:01) and permanent immunity (an~0).
doi:10.1371/journal.ppat.1000647.g004
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the range 14–23 years (see Figure 6). Moreover, more than 10% of
the population would have lost immunity within 10 years, which is
not in contradiction with clinical reports.

We extended both models to consider a gamma-distributed
immune period (with two classes, leading to a coefficient of
variation of 0.7). This model was less parsimonious with the data,
especially in the pre-vaccine era when it predicted longer inter-
epidemic periods and higher CCSs (Figures S7, S8, S9 and S10).
What these results suggest is that pertussis immunity is inherently
variable, and efforts to understand waning immunity of pertussis
require knowledge of the distribution of immune periods.

Unfortunately, our analyses are less conclusive about the
average duration of vaccine-derived immunity. However, for the
range of natural immunity consistent with the pre-vaccine era
data, the corresponding durations of vaccine-derived immunity
that give the best agreement with the data in the vaccine era are
generally shorter than the duration of natural immunity (and are
very short for the longest durations of natural immunity). Parsing
out the effects of different durations of vaccine-derived immunity
will require longer time series and potentially better data on
‘‘silent’’ repeat infections. This could be approached by consid-
ering longer datasets from the vaccine era. However, later
perturbations in vaccine uptake (during the mid-1970s) and
changes in vaccine content and protocols add further complexity
to determining the duration of vaccine-induced immunity.

Our model analyses highlight a number of robust findings.
Assuming that asymptomatic infections are unobserved, we find
model output to be in strong agreement with empirical patterns as

Figure 4. Basic model: the effects of waning immunity on critical community size. Panels A and B illustrate analyses of weekly fade-outs in
the stochastic model in the pre-vaccine and vaccine era as the average duration of immunity (1=an) is varied. Panel C shows fade-out analyses for the
England and Wales data in the pre-vaccine (blue) and vaccine (red) eras: open circles denote data points and solid lines the best-fit exponential curve.
Panel D demonstrates the results of fitting model output to the fade-out curves shown in C, as assessed by the square of the residuals: the blue lines
represent the pre-vaccine era; the red lines represent the vaccine era assuming that vaccine-induced immunity is lost at the rate av~an . Solid lines
denote averages and dashed lines indicate the 90% confidence envelope. For the stochastic model, weekly fade-outs are calculated as the average
number of weeks per year with zero case reports, assuming a 15% primary reporting rate and 1% secondary reporting rate, averaged over 50
realizations for each population size. Parameter values for the model are given in Table 1, with e~0. In panels A, B and D, the axis representing the
average duration of immunity is not to scale between 100 years (an~0:01) and permanent immunity (an~0).
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data, the corresponding durations of vaccine-derived immunity
that give the best agreement with the data in the vaccine era are
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will require longer time series and potentially better data on
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Figure 4. Basic model: the effects of waning immunity on critical community size. Panels A and B illustrate analyses of weekly fade-outs in
the stochastic model in the pre-vaccine and vaccine era as the average duration of immunity (1=an) is varied. Panel C shows fade-out analyses for the
England and Wales data in the pre-vaccine (blue) and vaccine (red) eras: open circles denote data points and solid lines the best-fit exponential curve.
Panel D demonstrates the results of fitting model output to the fade-out curves shown in C, as assessed by the square of the residuals: the blue lines
represent the pre-vaccine era; the red lines represent the vaccine era assuming that vaccine-induced immunity is lost at the rate av~an . Solid lines
denote averages and dashed lines indicate the 90% confidence envelope. For the stochastic model, weekly fade-outs are calculated as the average
number of weeks per year with zero case reports, assuming a 15% primary reporting rate and 1% secondary reporting rate, averaged over 50
realizations for each population size. Parameter values for the model are given in Table 1, with e~0. In panels A, B and D, the axis representing the
average duration of immunity is not to scale between 100 years (an~0:01) and permanent immunity (an~0).
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• Idea formalized by Wood (2010)


• Take data y and convert to statistics s (eg coefficients of 
autocovariance function, mean incidence of # zeros) 


• Choice of s allows us to define what matters about dynamics, 
but not how much it matters 


• Use model to simulate Nr replicate data sets (y1*, y2*, …)


• Convert to replicate statistics vectors (s1*, s2*, …) exactly as y 
was converted to s


• Evaluate

Synthetic “likelihood”

̂μθ = ∑
i

s*i
Nr

And S = (s*1 − ̂μθ, s*2 − ̂μθ, …)



Synthetic “likelihood”

• So


• The synthetic likelihood is therefore


• Measures consistency of parameter values with 
observed data

̂μθ = ∑
i

s*i
Nr

And S = (s*1 − ̂μθ, s*2 − ̂μθ, …)

Σ̂θ = SST /(Nr − 1)

ls(θ) =
1
2

(s − ̂μθ)TΣ̂−1
θ (s − ̂μθ) −

1
2

log | Σ̂θ |



Caveat

• In boarding school example, data represent number of 
boys sick ~ C(t)


• Typically, data are ‘incidence’ (newly detected or 
reported infections)


• Don’t directly correspond to any model variables


• May need to ‘construct’ new information:

– dP/dt = γY	 	 diagnosis at end of infectiousness


– dP/dt = βXY/N


• Set P(t+Δt) = 0 where Δt is sampling interval of data



Lecture Summary …

• R0 can be estimated from epidemiological data in a 

variety of ways

–Final epidemic size


–Mean age at infection


–Outbreak exponential growth rate


–Curve Fitting


• In principle, variety of unknown parameters may be 
estimated from data



Further, ...

1. Include uncertainty in initial conditions


•  We took I(0) = 1. Instead could estimate I(0) together with β 
and γ (now have 1 fewer data points)


2. Explicit observation model


• Implicitly assumed measurement errors normally distributed 
with fixed variance, but can relax this assumption


• Sometimes, better to use log-normal distribution


3. What is appropriate model?  


• SEIR model? (latent period before becoming infectious)


• SEICR model? (“confinement to bed”)


• Time varying parameters? (e.g. action taken to control spread) 
39



Further, ...

4.  Assumed model deterministic -- how do we fit a stochastic 
model? 


• Use a ‘particle filter’ to calculate likelihood


5. Can we simultaneously estimate numerous parameters?


• More complex models have more parameters…  estimate all 
from 14 data points? ⇒ identifiability 


6. More complex models are more flexible, so tend to fit better


• How do we determine if increased fit justifies increased 
complexity? ⇒ information criteria
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