Model-Data Interface

Model Calibration |: Ad hoc estimation



Parameter estimation

We've seen that basic reproductive ratio, R, is a
very important quantity

How do we calculate it?

In general, we might not know (many) model
parameters. How do we achieve parameter
estimation from epidemiological data?

Review some simple methods



The death of an epidemic

® In SIR equations, let’s divide equation for dS/dt by dR/dt:
e dS/dR = - (B SI)/(yl)
o =-R,S

® |ntegrate with respect to R
e S(t) = 5(0) e R Rg

® When epidemic is over, by definition, we have S(e), I(c0)
(=0), and R(e0)

® S(oo) = 1 — R(oo) = S(0) e R Ry



The death of an epidemic

® S0, 1 —=R(e)-S(0) eR=Ry=0

Epidemic dies out because ® Solve this numerically (‘transcendental’
| : : equation)
there are too few infectives, 1
not because of too few
susceptibles
| R0<1’
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1a. Final outbreak size

* So, it we know population size (N), (to
get S(0)), and (to get R(e)), we can
calculate R,

~ log(1 — R(0))

Ho = R(00)

e Note: Ma & Earn (2006) showed this formula is valid even
when numerous assumptions underlying simple SIR are
relaxed



n n w
< S (=3
Q Q Q

Number of boys confined to bed

-t
(=]
(=]

1. Final outbreak size

» Worked example:

. Influenza epidemic in a British
. boarding school in 1978

. N = 764
X(0) = 763
o Z(o0) ~ 512

y R, ~ 1.65




1b. Final outbreak size

o Becker showed that with more information, we can also

estimate R, from

: [
_ Xy+—=
RO = (N 1)1n< % .
X -
Y
« Again, we need to know population size (N) ,
(Xo): (C)

« Usefully, standard error for this formula has also been derived

(N-1) | & 1 CR/
SE(R,) = + -
( 0) C j=;f+1 j2 (N—l)z




2. Independent data

e An epidemiologically interesting quantity is mean age at
infection — how do we calculate it in simple models?

e From first principles, it's mean time spent in susceptible
class

o At equilibrium, this is given by 1/(31*), which leads to

() -G ) (ws)

This can be written as R -1 = L/A (L= life expectancy)

Historically, this equation’s been an important link between
epidemiological estimates of A and deriving estimates of R
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Mean age at infection (A) is ~4.5 years

Assume L~75,so R, ~ 17.6



Historical significance

Anderson & May (1982; Science)

Table 2. The intrinsic reproductive rate, R,, and average age of acquisition, A; for various infections [condensed from (25); see also (36)).
Abbreviations: r, rural; u, conurbation. '

" Average Assumed
Disease in?fgt?c:n, Geographical location cc;rrr}x,r[;:cu:ifty Time period - expehcincy R,
A (vyears) (years) |
Measles 4.410 5.6 England and Wales rand u 1944 to 1979 70 13.7 10 18.0
53 Various localities in North America rand u 1912 to 1928 60 12.5
Whooping 4.1t04.9 England and Wales rand u 1944 to 1978 70 14.3 to 17.1
cough 4.9 Maryland u . 1908 to 1917 60 12.2
Chicken pox 6.7 Maryland ~ u 1913 to 1917 60 9.0
. 7.1 Massachusetts rand u 1918 to 1921 60 _ 8.5
Diphtheria 9.1 Pennsylvania u 1910 to 1916 60 6.6
. 11.0 Virginia and New York rand u 1934 to 1947 70 6.4
Scarlet 8.0 Maryland u 1908 to 1917 60 7.5
fever 10.8 Kansas r 1918 to 1921 60 5.5
Mumps 9.9 Baltimore, Maryland - u 1943 70 7.1
) 13.9 Various localities in North America rand u 1912 to 1916 60 4.3
Rubella 10.5 West Germany rand u 1972 70 6.7
11.6 England and Wales rand u 1979 70 6.0
Poliomyelitis 11.2. Netherlands rand u 1960 70 6.2

11.9 United States rand u 1955 70 5.9




3. Epidemic Take-off

A slightly more common approach is to study the epidemic
take oft

Recall from linear stability

analysis that

I = 1(0) %'~

Take logarithms

log(Z ) = log(1(0)) + (R, — 1)y

Infectious

So, regression slope will give R,
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3. Epidemic take-off

« Back to school boys
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lag(Number of boys canfined to bed)
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Epidemic take-off
Siope:

A = 1.0859

Day

15

Our value for ‘flu

infectious period, 1/y

\

i So,
| Ry=1.0859%2.541

=3.7



Number of cases per 100000 population per week

Vynnycky et al. (2007)
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Vynnycky et al. (2007)
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Variants on this theme

e Recall

log(Zgz) =log(1(0)) + (R, —I)yz

» Let T, be 'doubling time' of outbreak
e Then,



4. Likelihood & inference

We focus on random process that (putatively)
generated data

A model is explicit, mathematical description of
this random process

"The likelihood” is probability data were
produced given model and its parameters:

L(model | data) = Pr(data | model)

Likelihood quantities (in some sense optimally)



4. Likelihood & estimation

e Assume we have data, D, and
(both are vectors containing state variables). Model

predictions generated using set of parameters, 6

* Observed dynamics subject to

— "process noise”: heterogeneity among
individuals, random differences in timing of
discrete events (environmental and demographic

stochasticity)
— "observation noise”: random errors made in
measurement process itself




4. Likelihood & estimation

O
* It we ignore process noise, then ° \
model is deterministic and all °

variability attributed to
measurement error

« Observation errors assumed to
be sequentially independent

« Maximizing likelihood in this
context is called "trajectory

matching’




4. Likelihood & estimation

e Under such conditions, Maximum Likelihood
Estimate, MLE, is simply parameter set with smallest
deviation from data

e Equivalent to using least square errors, to decide
on goodness of fit

— Least Squares Statistic = SSE = 2(D. — M )2

e Then, minimize SSE to arrive at MLE
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Trajectory matching
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Model estimation: Influenza outbreaks
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Recovery rate (y)

e Systematically vary B and y,
calculate SSE

Log (SSE)

e Parameter combination with
lowest SSE is ‘best fit’ .-

]
Transmission rate ()
Recovery rate (y)
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Transmission rate (p)
N

Model estimation: Influenza outbreak

Best fit parameter values:
B = 1.96 (per day)

1/y = 2.1 days

0.2

R, ~ 4.15

Generally, may have
more parameters to fit,
so grid search not
efficient

Nonlinear optimization
algorithms (eg Nelder-
Mead) would be used

04 06 08 1 :
Recovery rate (y)

25



Likelihood surface

SSE

log, ,(Transmission rate () -1 1 log, ,(Recovery rate (y))

When likelihood surface is somewhat complex, success of estimation using gradient-based
optimization algorithms (eg Nelder-Mead) will depend on providing a good initial guess



Other approaches

Data Model

SR/
Inter-epidemic

period

Compare model output with data, based on statistical
"features” (or "probes”) rather than raw numbers



Historical patterns of pertussis

United States

196
I

1940: Vaccines are widely distributed.

1948: Pertussis vaccine combined with
diphtheria and tetanus toxoids (DTP).

144
I

1996: Switch to acellular
vaccines recommended.

100
I

36

— 12 infant deaths
per year

Incidence (per 100,000)

16

< | | | | | | | |

1940 1950 1960 1970 1980 1990 2000 2010
Year

PUZZLE: Some countries with high vaccine coverage have experienced resurgence
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Whooping cough cases tied to waning vaccine
protection

Filed Under: Pertussis; Childhood Vaccines
Stephanie Soucheray | News Reporter | CIDRAP News | Jun 10, 2019
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A child who has never been vaccinated against
pertussis, or whooping cough, is 13 times more likely
to suffer from an infection of Bordetella pertussis than
is a child who is up-to-date on his or her vaccines.

But new evidence from a decade-long study at Kaiser
Permanente shows that vaccinated children were five
times more likely to suffer from whooping cough if it
had been more than 3 years since their last vaccine

dose. The research was published today in Pediatrics.
Ran Kyu Park / iStock

Q: Do pertussis vaccines protect for a lifetime?

A: Pertussis vaccines are effective, but not perfect.
within the first 2 years after getting the vaccine, bt
health experts call this ‘waning immunity.” Similarly
a few years.

In general, DTaP vaccines are 80% to 90% effective
schedule, effectiveness is very high within the yeat
are fully protected. There is a modest decrease in |
of 10 kids are fully protected 5 years after getting t
kids are partially protected - protecting against sel
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What Is Wrong with Pertussis Vaccine Immunity?
The Problem of Waning Effectiveness of Pertussis Vaccines

Nicolas Burdin,! Lori Kestenbaum Handy,2 and Stanley A. Plotkin3
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Pertussis!

® Problem: No identified serological marker for protection

® How to infer protective duration following infection or
vaccination?
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® Simulate model using Gillespie’s Direct Method

® |nclude birth rates and population size drawn
from England & Wales

® Quantitatively contrast model output with data
Inter-epidemic period
Fade-out (extinction) frequency
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Wearing & Rohani (2009)



Inter-epidemic period

A. Pre-vaccine era B. Vaccine era,o, =0t C. Vaccine era,av=0.1
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mean annual duration of fade-outs
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Fade-out frequency

Proportion of zero weeks

X

Population Size
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Synthetic “likelihood”

ldea formalized by Wood (2010)

Take data y and convert to statistics s (eg coefficients of
autocovariance function, mean incidence of # zeros)

Choice of s allows us to define what matters about dynamics,
but not how much it matters

Use model to simulate N, replicate data sets (y1", y2©, ...)

Convert to replicate statistics vectors (s17, s2%, ...) exactly as y
was converted to s

Fvaluate

s . A
ﬁ@z ZL And SZ(SIK_M(%S;_IM(%“')



Synthetic “likelihood”

/2\9: ZV Aﬂd S = (S;k _ﬂeasf _ﬂ\ea )
°* So >, =SST/(N.— 1)

® The synthetic likelihood is therefore

1 TS A 1 n
[(0) = E(S — o) 2y (s — fig) — 5 log |2y

® Measures consistency of parameter values with
observed data



Caveat

In boarding school example, data represent number of
boys sick ~ C(t)

Typically, data are ‘incidence’ (newly detected or
reported infections)

Don't directly correspond to any model variables

May need to ‘construct’ new information:

—dP/dt = yY diagnosis at end of infectiousness
_dP/dt = BXY/N

Set P(t+At) = 0 where At is sampling interval of data



» R, can be estimated from epidemiological data in a

variety of ways
—Final epidemic size
—Mean age at infection
—Qutbreak exponential growth rate

— Curve Fitting

* In principle, variety ot unknown parameters may be
estimated from data



Further, ...

1. Include uncertainty in initial conditions

e \We took 1(0) = 1. Instead could estimate 1(0) together with 3
and Yy (now have 1 fewer data points)

2. Explicit observation model

® Implicitly assumed measurement errors normally distributed
with fixed variance, but can relax this assumption

® Sometimes, better to use log-normal distribution

3. What is appropriate model?
® SEIR model? (latent period before becoming infectious)
e SEICR model? (“confinement to bed”)

® Time varying parameters? (e.g. action taken to control spread)



Further, ...

4. Assumed model deterministic -- how do we fit a stochastic

model?
® Use a ‘particle filter’ to calculate likelihood
5. Can we simultaneously estimate numerous parameters?

® More complex models have more parameters... estimate all
from 14 data points? = identifiability

6. More complex models are more flexible, so tend to fit better

® How do we determine if increased fit justifies increased
complexity? = information criteria



