Model-Data Interface

Model Calibration I: Ad hoc estimation

Parameter estimation

- We've seen that basic reproductive ratio, R₀, is a very important quantity
- How do we calculate it?
- In general, we might not know (many) model parameters. How do we achieve parameter estimation from epidemiological data?
- Review some simple methods

The death of an epidemic

- In SIR equations, let's divide equation for dS/dt by dR/dt:
 - $dS/dR = (\beta SI)/(\gamma I)$

•
$$= -R_0 S$$

- Integrate with respect to R
 - $S(t) = S(0) e^{-R(t) R_0}$
- When epidemic is over, by definition, we have S(∞), I(∞) (=0), and R(∞)

•
$$S(\infty) = 1 - R(\infty) = S(0) e^{-R(\infty) R_0}$$

The death of an epidemic

Epidemic dies out because there are too few infectives, not because of too few susceptibles

Kermack & McKendrick (1927)

- So, $1 R(\infty) S(0) e^{-R(\infty) R_0} = 0$
- Solve this numerically ('transcendental' equation)

1a. Final outbreak size

• So, if we know population size (N) , initial susceptibles (to get S(0)), and total number infected (to get R(∞)), we can calculate R₀

$$R_0 = -\frac{\log(1 - R(\infty))}{R(\infty)}$$

 Note: Ma & Earn (2006) showed this formula is valid even when numerous assumptions underlying simple SIR are relaxed

1. Final outbreak size

• Worked example:

Influenza epidemic in a British boarding school in 1978

R₀ ~ 1.65

1b. Final outbreak size

- Becker showed that with more information, we can also estimate R_0 from

$$R_{0} = \frac{(N-1)}{C} \ln \left\{ \frac{X_{0} + \frac{1}{2}}{X_{f} - \frac{1}{2}} \right\} \quad (\sim 1.66)$$

- Again, we need to know population size (N), initial susceptibles (X₀), total number infected (C)
- Usefully, standard error for this formula has also been derived

$$SE(R_0) = \frac{(N-1)}{C} \sqrt{\sum_{j=X_f+1}^{X_0} \frac{1}{j^2} + \frac{CR_0^2}{(N-1)^2}}$$

2. Independent data

- An epidemiologically interesting quantity is mean age at infection how do we calculate it in simple models?
- From first principles, it's mean time spent in susceptible class
- At equilibrium, this is given by $1/(\beta I^*)$, which leads to

$$A = \left(\frac{1}{\mu(R_0 - 1)}\right) = \left(\frac{1}{\mu}\right) \left(\frac{1}{(R_0 - 1)}\right)$$

• This can be written as R_0 -1 \approx L/A (L= life expectancy)

 Historically, this equation's been an important link between epidemiological estimates of A and deriving estimates of R₀

Measles Age-Stratified Seroprevalence

Historical significance

Anderson & May (1982; Science)

Table 2. The intrinsic reproductive rate, R_0 , and average age of acquisition, A, for various infections [condensed from (25); see also (36)]. Abbreviations: r, rural; u, conurbation.

Disease	Average age at infection, A (years)	Geographical location	Type of community	Time period	Assumed life expectancy (years)	R ₀
Measles	4.4 to 5.6	England and Wales	r and u	1944 to 1979	70	13.7 to 18.0
	5.3	Various localities in North America	r and u	1912 to 1928	60	12.5
Whooping	4.1 to 4.9	England and Wales	r and u	1944 to 1978	70	14.3 to 17.1
cough	4.9	Maryland	u	1908 to 1917	60	12.2
Chicken pox	6.7	Maryland	' u	1913 to 1917	60	9.0
	7.1	Massachusetts	rand u	1918 to 1921	60	8.5
Diphtheria	9.1	Pennsylvania	u	1910 to 1916	60	6.6
	11.0	Virginia and New York	rand u	1934 to 1947	70	6.4
Scarlet	8.0	Maryland	u	1908 to 1917	60	7.5
fever	10.8	Kansas	r	1918 to 1921	60	
Mumps	9.9	Baltimore, Maryland	u	1943	70	7.1
	13.9	Various localities in North America	rand u	1912 to 1916	60	4.3
Rubella	10.5	West Germany	r and u	1972	70	6.7
	11.6	England and Wales	r and u	1979	70	6.0
Poliomyelitis	11.2	Netherlands	r and u	1960	70	6.2
	11.9	United States	r and u	1955	70	5.9

3. Epidemic Take-off

A slightly more common approach is to study the epidemic take off

Recall from linear stability analysis that

$$I_{SIR} \approx I(0) \times e^{(R_0 - 1)\gamma t}$$

Take logarithms

$$\log(I_{SIR}) = \log(I(0)) + (R_0 - 1)\gamma t$$

So, regression slope will give R_0

3. Epidemic take-off

• Back to school boys

Epidemic take-off

Vynnycky et al. (2007)

Week ending

Vynnycky et al. (2007)

Variants on this theme

Recall

 $\log(I_{SIR}) = \log(I(0)) + (R_0 - 1)\gamma t$

- Let T_d be 'doubling time' of outbreak
- Then,

 $-R_0 = \log(2) / T_d \gamma + 1$

4. Likelihood & inference

- We focus on random process that (putatively) generated data
- A model is explicit, mathematical description of this random process
- "The likelihood" is probability data were produced given model and its parameters:
- L(model | data) = Pr(data | model)
- Likelihood quantifies (in some sense optimally)

4. Likelihood & estimation

- Assume we have data, D, and model output, M (both are vectors containing state variables). Model predictions generated using set of parameters, θ
- Observed dynamics subject to
 - <u>"process noise"</u>: heterogeneity among individuals, random differences in timing of discrete events (environmental and demographic stochasticity)
 - <u>"observation noise</u>": random errors made in measurement process itself

4. Likelihood & estimation

- If we ignore process noise, then model is deterministic and all variability attributed to measurement error
- Observation errors assumed to be sequentially independent
- Maximizing likelihood in this context is called 'trajectory matching'

4. Likelihood & estimation

- Under such conditions, Maximum Likelihood
 Estimate, MLE, is simply parameter set with smallest deviation from data
- Equivalent to using least square errors, to decide on goodness of fit

- Least Squares Statistic = SSE = $\Sigma (D_i - M_j)^2$

• Then, minimize SSE to arrive at MLE

Zhao et al. (2020; Int. J. Inf. Dis.)

Trajectory matching

Trajectory matching

Model estimation: Influenza outbreak

- Systematically vary β and γ, calculate SSE
- Parameter combination with lowest SSE is 'best fit'

Model estimation: Influenza outbreak

Likelihood surface

When likelihood surface is somewhat complex, success of estimation using gradient-based optimization algorithms (eg Nelder-Mead) will depend on providing a good initial guess ²⁶

Other approaches

Compare model output with data, based on statistical "features" (or "probes") rather than raw numbers

Historical patterns of pertussis

United States

196 1940: Vaccines are widely distributed. 1948: Pertussis vaccine combined with 144diphtheria and tetanus toxoids (DTP). 1996: Switch to acellular Incidence (per 100,000) 100 vaccines recommended. 2 36 12 infant deaths per year 16 4 0 1940 1950 1960 1970 1980 1990 2000 2010 Year

PUZZLE: Some countries with high vaccine coverage have experienced resurgence

Whooping cough cases tied to waning vaccine protection

Filed Under: Pertussis; Childhood Vaccines

Stephanie Soucheray | News Reporter | CIDRAP News | Jun 10, 2019

🄰 Tweet 🛛 in LinkedIn

n 🔀 Email 📑 Print & PDF

A child who has never been vaccinated against pertussis, or whooping cough, is 13 times more likely to suffer from an infection of *Bordetella pertussis* than is a child who is up-to-date on his or her vaccines.

But new evidence from a decade-long study at Kaiser Permanente shows that vaccinated children were five times more likely to suffer from whooping cough if it had been more than 3 years since their last vaccine dose. The research was published today in *Pediatrics*.

Ran Kyu Park / iStock

Cold Spring

Ha

s J. 2005 May;24(5 Suppl):S58-61. .59160.41.

unity against pertussis after natural ination

s Van Rie, Stefania Salmaso, Janet A Englund

/01.inf.0000160914.59160.41

ation coverage, pertussis has remained endemic and reemerged as

a public nearth problem in many countries in the past 2 decades. Waning of vaccine-induced

• •	 •	nd. A review of
		red immunity

Q: Do pertussis vaccines protect for a lifetime?

A: Pertussis vaccines are effective, but not perfect. within the first 2 years after getting the vaccine, bu health experts call this 'waning immunity.' Similarly a few years.

In general, DTaP vaccines are 80% to 90% effective schedule, effectiveness is very high within the year are fully protected. There is a modest decrease in of 10 kids are fully protected 5 years after getting t kids are partially protected – protecting against ser Journal List > Cold Spring Harb Perspect Biol > v.9(12); 2017 Dec > PMC5710106

<u>Cold Spring Harb Perspect Biol.</u> 2017 Dec; 9(12): a029454. doi: <u>10.1101/cshperspect.a029454</u>

What Is Wrong with Pertussis Vaccine Immunity? The Problem of Waning Effectiveness of Pertussis Vaccines

Nicolas Burdin,¹ Lori Kestenbaum Handy,² and Stanley A. Plotkin³

Author information Copyright and License information Disclaimer

- Simulate model using Gillespie's Direct Method
- Include birth rates and population size drawn from England & Wales
- Quantitatively contrast model output with data Inter-epidemic period Fade-out (extinction) frequency

Inter-epidemic period

Different kinds of epidemics

Bartlett (1957)

Fade-out frequency

Synthetic "likelihood"

- Idea formalized by Wood (2010)
- Take data **y** and convert to statistics **s** (eg coefficients of autocovariance function, mean incidence of # zeros)
- Choice of *s* allows us to define <u>what</u> matters about dynamics, but not <u>how much</u> it matters
- Use model to simulate N_r replicate data sets ($y_1^*, y_2^*, ...$)
- Convert to replicate statistics vectors (s₁*, s₂*, ...) exactly as y was converted to s
- Evaluate

$$\hat{\mu}_{\theta} = \sum_{i} \frac{s_{i}^{*}}{N_{r}}$$
 And $S = (s_{1}^{*} - \hat{\mu}_{\theta}, s_{2}^{*} - \hat{\mu}_{\theta}, ...)$

Synthetic "likelihood"

$$\hat{\mu}_{\theta} = \sum_{i} \frac{s_{i}^{*}}{N_{r}}$$
 And $S = (s_{1}^{*} - \hat{\mu}_{\theta}, s_{2}^{*} - \hat{\mu}_{\theta}, ...)$

• So
$$\hat{\Sigma}_{\theta} = SS^T / (N_r - 1)$$

• The synthetic likelihood is therefore

$$l_s(\theta) = \frac{1}{2} (s - \hat{\mu}_{\theta})^T \hat{\Sigma}_{\theta}^{-1} (s - \hat{\mu}_{\theta}) - \frac{1}{2} \log |\hat{\Sigma}_{\theta}|$$

 Measures consistency of parameter values with observed data

Caveat

- In boarding school example, data represent number of boys sick ~ C(t)
- Typically, data are 'incidence' (newly detected or reported infections)
- Don't directly correspond to any model variables
- May need to 'construct' new information:
 - $dP/dt = \gamma Y$ diagnosis at end of infectiousness
 - $-dP/dt = \beta XY/N$
- Set P(t+ Δ t) = 0 where Δ t is sampling interval of data

Lecture Summary ...

- R₀ can be estimated from epidemiological data in a variety of ways
 - Final epidemic size
 - Mean age at infection
 - -Outbreak exponential growth rate
 - Curve Fitting
- In principle, variety of unknown parameters may be estimated from data

Further, ...

- 1. Include uncertainty in initial conditions
 - We took I(0) = 1. Instead could estimate I(0) together with β and γ (now have 1 fewer data points)
- 2. Explicit observation model
 - Implicitly assumed measurement errors normally distributed with fixed variance, but can relax this assumption
 - Sometimes, better to use log-normal distribution
- 3. What is appropriate model?
 - SEIR model? (latent period before becoming infectious)
 - SEICR model? ("confinement to bed")
 - Time varying parameters? (e.g. action taken to control spread)

Further, ...

- 4. Assumed model deterministic -- how do we fit a stochastic model?
 - Use a 'particle filter' to calculate likelihood
- 5. Can we simultaneously estimate numerous parameters?
 - More complex models have more parameters... estimate all from 14 data points? ⇒ identifiability
- 6. More complex models are more flexible, so tend to fit better
 - How do we determine if increased fit justifies increased complexity? ⇒ information criteria